摘要
利用中心以外的非循环子群自正规化性质,刻画了有限群的结构,得到:如果对于有限群G的每个素数幂阶非循环子群H,或者H≤Z(G),或者|N_G(H):H|≤2,则G是超可解群。对于任意非循环非中心子群H满足N_G(H)=H的有限群G,给出了它的结构分类。
By some non-cyclic subgroups outside centre being self-normalizing to characterize the structure of finitegroups, the results were obtained as follows: A finite group G is always supersolvable if either |NG(H) : H| ≤ 2 orH ≤ Z(G) for every non-cyclic subgroup H of G of prime-power order. Also, finite groups G with all non-cyclicsubgroups being self-normalizing or contained in Z(G) are completely classified.
作者
钟祥贵
张晓蕾
Zhong Xianggui Zhang Xiaolei(College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)
出处
《湖南文理学院学报(自然科学版)》
CAS
2016年第4期1-3,共3页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
国家自然科学基金项目(11261007)
广西省自然科学基金项目(2014GXNSFAA118009)
广西高校科学技术研究项目(ZD2014016)
关键词
有限群
非循环子群
指数
正规化子
finite groups
non-cyclic subgroup
index
normalize