期刊文献+

中心以外的非循环子群自正规化的有限群

Finite groups with some non-cyclic subgroups outside centre being self-normalizing
下载PDF
导出
摘要 利用中心以外的非循环子群自正规化性质,刻画了有限群的结构,得到:如果对于有限群G的每个素数幂阶非循环子群H,或者H≤Z(G),或者|N_G(H):H|≤2,则G是超可解群。对于任意非循环非中心子群H满足N_G(H)=H的有限群G,给出了它的结构分类。 By some non-cyclic subgroups outside centre being self-normalizing to characterize the structure of finitegroups, the results were obtained as follows: A finite group G is always supersolvable if either |NG(H) : H| ≤ 2 orH ≤ Z(G) for every non-cyclic subgroup H of G of prime-power order. Also, finite groups G with all non-cyclicsubgroups being self-normalizing or contained in Z(G) are completely classified.
作者 钟祥贵 张晓蕾 Zhong Xianggui Zhang Xiaolei(College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)
出处 《湖南文理学院学报(自然科学版)》 CAS 2016年第4期1-3,共3页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 国家自然科学基金项目(11261007) 广西省自然科学基金项目(2014GXNSFAA118009) 广西高校科学技术研究项目(ZD2014016)
关键词 有限群 非循环子群 指数 正规化子 finite groups non-cyclic subgroup index normalize
  • 相关文献

参考文献1

二级参考文献5

  • 1[1]Zhang Qinghai.Influec of s-semipermutatable on the structure of finite group[J].Acta Mathematica Sinica,2005,48(1):82-88.
  • 2[2]Cheng Chongmu.Niner-out ∑-group and Minimum non-group[M].Chongqing:Publishing house of Southwest normal university,1988.
  • 3[3]Guo Wenbing.Theory of Classes of Groups[M].Beijing-New York-Dordrecht-Boston-London:Scince Press-Kluwer Academic Publisher,2000.
  • 4[4]B Huppert.Endliche Gruppen I[M].Berlin Heidelberg New York Springer Verlag,1967.
  • 5[5]D Li,X.Guo.The influence of c-normality of subgroups on the structure of finite groups II[J].Comm,Algebra,1998(26):1 913-1 922.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部