期刊文献+

高阶斜积映射下Schr?dinger算子的Lyapunov指数

Lyapunov Exponent of Schr?dinger Operator with High Order Skew Shift
下载PDF
导出
摘要 利用Weyl差分原理、大偏差定理和雪崩原理等方法,考虑高阶斜积映射T_ω定义下离散解析Schr?dinger算子的Lyapunov指数正性和连续性问题.证明了当其势能系数充分大时,系统的Lyapunov指数关于能量参数E是弱H?lder连续的,且是正的.从而将低阶斜积映射下的Lyapunov指数连续性和正性的结论推广到了高阶情形. By using the methods including Weyl's difference principle, large deviation theorem, avalanche principle and so on, we considered the problem of the Lyapunov exponent positivity and continuity of the discrete analytic Schrodinger operator defined by the high order skew shift Tw. We proved that if the potential energy factor was big enough, then the Lyapunov exponent of the system was positive and week Holder continuity. This results extended the conclusion about the Lyapunov exponent positivity and continuity with the lower order skew shift to the one with the high order skew shift.
作者 陶凯 王万鹏
机构地区 河海大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第6期1260-1264,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11401166)
关键词 SCHRODINGER算子 LYAPUNOV指数 高阶斜积映射 Schrodinger operator Lyapunov exponent high order skew shift
  • 相关文献

参考文献1

二级参考文献17

  • 1Avila A,Jitomirskaya S. The Ten Martini problem[J].Annals of Mathematics,2009.303-342.
  • 2Bochi J. Disontinuity of the Lyapunov exponent for non-hyperbolic cocycle[J].1999.
  • 3Bochi J. Genericity of zero Lyapunov exponents[J].Ergodic Theory and Dynamical Systems,2002.1667-1696.
  • 4Bochi J,Viana M. The Lyapunov exponents of generic volume preserving and symplectic systems[J].Annals of Mathematics,2005.1423-1485.
  • 5Bourgain J. Green's Function Estimates for Lattice Schr(o)dinger Operators and Applications[A].Princeton,New Jersey:Princeton University Press,2005.
  • 6Bourgain J. Positivity and continuity of the Lyapunov exponent for Shifts on Td with arbitrary frequency vector and real analytic potential[J].Journal d'Analyse Mathematique,2005.313-355.
  • 7Bourgain J,Goldstein M,Schlag W. Anderson localization for Schr(o)dinger operators on Z with potentials given by the skew-shift[J].Communications in Mathematical Physics,2001.583-621.
  • 8Bourgain J,Jitomirskaya S. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential[J].Journal of Statistical Physics,2002,(5-6):1203-1218.doi:10.1023/A:1019751801035.
  • 9Furman A. On the multiplicative ergodic theorem for uniquely ergodic systems[J].Annales de l'Institut Henri Poincaré,1997.797-815.
  • 10Goldstein M,Schlag W. H(o)lder continuity of the integrated density of states for quasiperiodic Schr(o)dinger equations and averages of shifts of subharmonic functions[J].Annals of Mathematics,2001.155-203.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部