期刊文献+

重尾分布中二阶参数的渐近无偏估计

Asymptotically unbiased estimation of the second-order parameter in the heavy-tailed distribution
下载PDF
导出
摘要 基于统计量T_(n,k)(K),先提出二阶参数的有偏估计量,再通过2个有偏估计量的线性组合构造了一类二阶参数的渐近无偏估计.在二阶正则条件下,研究了估计量的相合性;在三阶正则条件下,研究了估计量的渐近正态性.最后通过模拟,在特定条件下,将此无偏估计量ρn,k(K^(1,2),α,t*(ρ,β))与Goegebeur提出的估计量ρ_(n,k)(K^(1,2),α_1,α_2,l)的均值和方差进行模拟比较,结果表明,提出的无偏估计量表现更好. Based on the statistics Tn,k (K), the paper first puts forward the biased estimator of the second - order parameters, and then through a linear combination of the two biased estimators for a class of the second - order con- structs the asymptotically unbiased estimation of parameters. The consistency of the estimation is studied under the second -order regular variable condition, and asymptotic normality is achieved under the third -order condition. At last, through simulation, it compares the unbiased estimator ρn,k (K(1,2) ,α,t* (ρ,β)) with the estimator ρn,k (K(1,2) ,α1 ,α2 ,l) proposed by Goegebeur et al. (2010) in terms of mean and variance, and the proposed estimator performs better.
作者 贺园园
出处 《云南民族大学学报(自然科学版)》 CAS 2016年第6期516-523,共8页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 教育部人文社会科学研究项目(14YJA790034)
关键词 正则变化条件 二阶参数 无偏估计 相合性 渐近正态性 regular variable condition second - order parameter unbiased estimation consistency asymptotic normality
  • 相关文献

参考文献2

二级参考文献15

  • 1苏淳,唐启鹤,江涛.A contribution to large deviations for heavy-tailed random sums[J].Science China Mathematics,2001,44(4):438-444. 被引量:27
  • 2周道华,吴四才.关于次指数族的两个性质[J].咸宁学院学报,2005,25(6):21-23. 被引量:1
  • 3Hill B. A simple general approach to infererce about the tail of a distribution[J]. Annals of Statistics, 1975, 3: 1163-1174.
  • 4Resnick S, Starica C. Tail index estimation for dependent data[J]. The Annals of Applied Probability, 1998, 4: 1156-1183.
  • 5Kratz M, Resnick S. The qq-estimator and heavy tails[J]. Stochastic Models, 1996, 12(4): 699-724.
  • 6Beirlant J, Vynckier P, Teugels J L. Tail index estimation, pareto quantile plots, and regression diagnostics[J]. Journal of the American Statistical Association, 1996, 436: 1659-1667.
  • 7Resnick S, Starica C. Smoothing the Hill estimator[J]. Advances in Applied Probability, 1997, 29: 271-293.
  • 8Drees H, Haan L D, Resnick S. How to make a Hill plot[J]. Annals of Statistics, 2000, 28: 254-274.
  • 9Sousa B. A contribution to the estimation of the tail index of heavy-tailed distributions[D]. The University of Michigan, 2002.
  • 10Hall P. Using the bootstrap to estimate mean square error and select smoothing parameters in non-parametric problems[J]. Journal of Multivariate Analysis, 1990, 32: 177-203.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部