摘要
基于统计量T_(n,k)(K),先提出二阶参数的有偏估计量,再通过2个有偏估计量的线性组合构造了一类二阶参数的渐近无偏估计.在二阶正则条件下,研究了估计量的相合性;在三阶正则条件下,研究了估计量的渐近正态性.最后通过模拟,在特定条件下,将此无偏估计量ρn,k(K^(1,2),α,t*(ρ,β))与Goegebeur提出的估计量ρ_(n,k)(K^(1,2),α_1,α_2,l)的均值和方差进行模拟比较,结果表明,提出的无偏估计量表现更好.
Based on the statistics Tn,k (K), the paper first puts forward the biased estimator of the second - order parameters, and then through a linear combination of the two biased estimators for a class of the second - order con- structs the asymptotically unbiased estimation of parameters. The consistency of the estimation is studied under the second -order regular variable condition, and asymptotic normality is achieved under the third -order condition. At last, through simulation, it compares the unbiased estimator ρn,k (K(1,2) ,α,t* (ρ,β)) with the estimator ρn,k (K(1,2) ,α1 ,α2 ,l) proposed by Goegebeur et al. (2010) in terms of mean and variance, and the proposed estimator performs better.
出处
《云南民族大学学报(自然科学版)》
CAS
2016年第6期516-523,共8页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
教育部人文社会科学研究项目(14YJA790034)
关键词
正则变化条件
二阶参数
无偏估计
相合性
渐近正态性
regular variable condition
second - order parameter
unbiased estimation
consistency
asymptotic normality