摘要
在云计算环境下,传统的光纤数据存储方式对于规模较大的海量光纤通信数据很难进行实时传输和调度,对海量光纤通信数据的存储,存在一定的存储负荷问题。提出一种基于自适应子空间特征压缩算法的通信数据存储模型,分析数据的特征,采用滤波算法过滤冗余的数据,通过自适应子空间特征压缩算法降低海量光纤数据存储的负荷,进一步实现对海量光纤通信数据存储模型的优化。实验仿真结果表明,改进后的方法对海量光纤通信数据存储,有效提高海量光纤数据的传输和利用率,降低了存储负荷且具有较好的实用性。
In cloud computing environment for storage of huge amounts of optical fiber communication data, due to the large amount of data, there is a certain storage load, need to build a massive optical fiber communication data storage model, and optimized, improve its storage capacity and computing efficiency. Proposed based on adaptive subspace feature compression under the cloud of massive amounts of optical fiber communication data storage algorithm, establish the huge amounts of optical fiber communication architecture data storage mechanism, analyzing the characteristic of the data, set up information flow model of optical fiber communication data, using filter redundant data filtering algorithm, the introduction of the adaptive subspace feature compression method to delete the duplicate data, reduce the load of data storage, optimizing the storage model. The experimental simulation results show that the improved method for optical fiber communication data storage model, which can effectively improve the utilization efficiency of optical fiber communication data transmission and, reduce the storage load, and has good practicability.
出处
《激光杂志》
北大核心
2016年第11期89-93,共5页
Laser Journal
基金
国家青年自然科学基金(31JKC451157)
关键词
云计算
海量光纤数据
数据存储
模型构建
cloud computing
massive data
optical fiber communication
storage