期刊文献+

云计算环境下的海量光纤数据存储模型仿真分析

Cloud computing environment of mass optical data storage model simulation analysis
下载PDF
导出
摘要 在云计算环境下,传统的光纤数据存储方式对于规模较大的海量光纤通信数据很难进行实时传输和调度,对海量光纤通信数据的存储,存在一定的存储负荷问题。提出一种基于自适应子空间特征压缩算法的通信数据存储模型,分析数据的特征,采用滤波算法过滤冗余的数据,通过自适应子空间特征压缩算法降低海量光纤数据存储的负荷,进一步实现对海量光纤通信数据存储模型的优化。实验仿真结果表明,改进后的方法对海量光纤通信数据存储,有效提高海量光纤数据的传输和利用率,降低了存储负荷且具有较好的实用性。 In cloud computing environment for storage of huge amounts of optical fiber communication data, due to the large amount of data, there is a certain storage load, need to build a massive optical fiber communication data storage model, and optimized, improve its storage capacity and computing efficiency. Proposed based on adaptive subspace feature compression under the cloud of massive amounts of optical fiber communication data storage algorithm, establish the huge amounts of optical fiber communication architecture data storage mechanism, analyzing the characteristic of the data, set up information flow model of optical fiber communication data, using filter redundant data filtering algorithm, the introduction of the adaptive subspace feature compression method to delete the duplicate data, reduce the load of data storage, optimizing the storage model. The experimental simulation results show that the improved method for optical fiber communication data storage model, which can effectively improve the utilization efficiency of optical fiber communication data transmission and, reduce the storage load, and has good practicability.
作者 常莲 刘健
出处 《激光杂志》 北大核心 2016年第11期89-93,共5页 Laser Journal
基金 国家青年自然科学基金(31JKC451157)
关键词 云计算 海量光纤数据 数据存储 模型构建 cloud computing massive data optical fiber communication storage
  • 相关文献

参考文献12

二级参考文献144

  • 1胡少英,王铭业,李永红,郑健兵.云计算架构下的智能化水电厂研究[J].水电自动化与大坝监测,2013,37(3):1-4. 被引量:1
  • 2王东升,金伟良,龚顺风.运用层次分析法鉴定混凝土桥梁健康状况[J].科技通报,2005,21(1):41-44. 被引量:10
  • 3董欢庆,李战怀,林伟.RAID-VCR:一种能够承受三个磁盘故障的RAID结构[J].计算机学报,2006,29(5):792-800. 被引量:10
  • 4谷震离.关系数据库查询优化方法研究[J].微计算机信息,2006(05X):162-164. 被引量:33
  • 5Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 6Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 7Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 8You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 9Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.
  • 10Sapuntzakis CP,Chandra R,Pfaff B,Chow J,Lam MS,Rosenblum M.Optimizing the migration of virtual computers.In:Proc.of the 5th Symp.on Operating Systems Design and Implementation (OSDI 2002).New York:ACM Press,2002.377-390.

共引文献393

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部