摘要
针对具有指数函数形式权因子的有理Bézier曲线,研究该曲线的退化性质.首先将具有指数函数形式的权因子转化为幂函数形式,并指出它们之间的关系;然后利用有理Bézier曲线的toric退化理论定义正则控制曲线;最后给出权因子趋向于无穷时有理Bézier曲线的退化曲线及其几何性质.实验结果验证了文中提出的退化理论,并指出其与有理Bézier曲线toric退化之间的区别.
For the rational Bézier curve with weights in the form of exponential function, the degeneration ofthe curve is presented in this paper. Firstly, the weights in the form of exponential function are converted intothe form of power function and we indicate the relationship between them. Based on the toric degenerations ofrational Bézier curve, the regular control curve of rational Bézier curve is defined. Finally, the geometric propertyof the degeneration of curve of rational Bézier curve while weights approach to infinity is presented. Experimentalresults verify the presented result and show the differences between it and the toric degenerations ofrational Bézier curve.
作者
张跃
朱春钢
郭庆杰
Zhang Yue Zhu Chungang Guo Qingjie(School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 School of Sciences, Dalian University of Technology, Panjin 124221)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2016年第12期2067-2074,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(11271060
11290143)
民用飞机专项项目(MJ-F-2012-04)
辽宁省高等学校优秀人才支持计划(LJQ2014010)
中央高校基本科研业务费专项基金(DUT15RC(3)058
DUT16LK38)