期刊文献+

具有指数函数形式权因子的有理Bézier曲线退化

Degenerations of Rational Bézier Curves with Weights in the Form of Exponential Function
下载PDF
导出
摘要 针对具有指数函数形式权因子的有理Bézier曲线,研究该曲线的退化性质.首先将具有指数函数形式的权因子转化为幂函数形式,并指出它们之间的关系;然后利用有理Bézier曲线的toric退化理论定义正则控制曲线;最后给出权因子趋向于无穷时有理Bézier曲线的退化曲线及其几何性质.实验结果验证了文中提出的退化理论,并指出其与有理Bézier曲线toric退化之间的区别. For the rational Bézier curve with weights in the form of exponential function, the degeneration ofthe curve is presented in this paper. Firstly, the weights in the form of exponential function are converted intothe form of power function and we indicate the relationship between them. Based on the toric degenerations ofrational Bézier curve, the regular control curve of rational Bézier curve is defined. Finally, the geometric propertyof the degeneration of curve of rational Bézier curve while weights approach to infinity is presented. Experimentalresults verify the presented result and show the differences between it and the toric degenerations ofrational Bézier curve.
作者 张跃 朱春钢 郭庆杰 Zhang Yue Zhu Chungang Guo Qingjie(School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 School of Sciences, Dalian University of Technology, Panjin 124221)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第12期2067-2074,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(11271060 11290143) 民用飞机专项项目(MJ-F-2012-04) 辽宁省高等学校优秀人才支持计划(LJQ2014010) 中央高校基本科研业务费专项基金(DUT15RC(3)058 DUT16LK38)
关键词 有理BÉZIER曲线 toric退化 权因子 指数函数 幂函数 rational Bézier curve toric degeneration weight exponential function power function
  • 相关文献

参考文献5

二级参考文献44

  • 1Barsky B A, Greengerg D P. Determining a set of B-spline control vertices to generate an interpolating surface[J]. Computer Graphics and Image Processing, 1980, 14(3): 203~226.
  • 2Pieg L. Modifying of the shape of rational B-spline [J]. CAD, 1989, 21(8): 509~518.
  • 3Hu Shimin, Zhou Denwen, Sun Jiaguang. Shape modification of NURBS curves via constrained optimization[A]. In: Proceedings the CAD/Graphics'99 [C]. Shanghai: Wenhui Publishers, 1999. 958 ~ 962.
  • 4Pieg L, Tiller W. The NURBS book [M]. Springer, New York, 1995. 1~106.
  • 5Farin G. NURBS curves and surfaces [M]. Peter A K, Wellesley, MA, 1995. 64~123.
  • 6Forrest A R. The twisted cubic curve: A computer aided geometric design approach [J]. CAD, 1980, 12(4): 165~172.
  • 7Han X. Quadratic trigonometric polynomial curves with a shape parameter [J]. CAGD, 2002, 19(7): 503~512.
  • 8王国瑾,高校应用数学学报,1988年,3卷,2期,237页
  • 9刘鼎元,应用数学学报,1985年,8卷,1期,70页
  • 10汪国昭,浙江大学学报,1985年,19卷,3期,123页

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部