期刊文献+

重新下降M估计子约束的深度图超分辨率算法 被引量:1

Depth-map Super-resolution Algorithm with Redescending M-estimator Constraints
下载PDF
导出
摘要 现有的深度图超分辨率增强算法大多借助于同场景彩色图像提供的辅助信息,而不同传感器信号间的结构差异将会引入质量损伤.为此,将图像引导的深度近邻关系视为误差,并利用重新下降M估计子进行误差的测度,从而有效抑制彩色图像和深度图像间结构差异的问题.首先根据相似颜色具有相似深度的假设建立深度近邻约束;其次利用重新下降M估计子度量深度邻域约束,将深度超分辨率增强转换成一个最优化问题;最后通过广义迭代重新加权最小二乘法予以求解.实验结果表明,该算法可有效地保持深度图的对象边缘,定性和定量指标均优于现有的代表性算法. Most of the depth-map super-resolution algorithms rely on the information provided by the guidedcolor image. Due to differences in structure between guided and input signals, such algorithms are hard to preservedepth boundaries. We address this problem by redescending m-estimators. First, the neighboring constraintsfor depth are built based on color similarities. Second, redescending m-estimator is used to measure the constraints.Then, the depth super-resolution is formulated as an optimization problem. Such a choice helps in dealingwith violations of the assumption that similar colors have similar depth. Finally, the solution is obtained by thegeneralized iteratively reweighted least squares. The experimental results demonstrate that our algorithm can preservedepth boundaries and is superior to existing algorithms in terms of depth accuracy.
作者 袁红星 安鹏 吴少群 郑悠 童春芽 Yuan Hongxing An Peng Wu Shaoqun Zheng You and Tong Chunya(School of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315211)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第12期2195-2201,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61502256) 浙江省自然科学基金(LY16F010014 LY15F020011 LQ14F010001) 浙江省教育厅项目(Y201533511) 宁波市自然科学基金(2013A610114)
关键词 深度图超分辨率 结构差异 重新下降M估计子 广义迭代重新加权最小二乘法 深度图边缘 depth-map super-resolution structure difference redescending M-estimator generalized iterativelyreweighted least squares depth-map boundary
  • 相关文献

参考文献4

二级参考文献48

  • 1郑芳炫,杨志强.以消失点为基础下从单张影像中估测深度[J].信息技术与应用,2006,1(3):229-235.
  • 2Batlle J, Mouaddib E, Salvi J. Recent Progress in Coded Structured Light as a Technique to Solve the Correspondence Problem: A Sur- vey. Pattern Recognition, 1998, 31 (7) :963-982.
  • 3Jarvis R A. A Perspective on Range Finding Techniques for Computer Vision. IEEE Trans on Pattern Analysis and Machine Intelligence, 1983, 5(2) : 122-139.
  • 4Salvi J, Pages J, BatUe J. Pattern Codification Strategies in Struc- tured Light Systems. Pattern Recognition, 2004, 37 (4) : 827-849.
  • 5Schuon S, Theobalt C, Davis J, et al. High-quality Scanning Using Time-of-flight Depth Super-Resolution//Proc of the IEEE Comput- er Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008:1-7.
  • 6Schuon S, Theobalt C, Davis J, et al. LidarBoost: Depth Super- Resolution for ToF 3D Shape Scanning//Prec of the IEEE Comput- er Society Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009:343-350.
  • 7Zhang Xudong, Shen Yuliang, Hu Liangmei. Super-Resolution Reconstruction Algorithm for PMD Range Image Based on Regulari- zation//Proc of the International Conference on Intelligent Human- Machine Systems and Cybernetics. Hangzhou, China, 2011, Ⅱ: 15-18.
  • 8Farsiu S, Robinson M D, Elad M, et al. Fast and Robust Multi- frame Super-Resolution. IEEE Trans on Image Processing, 2004, 13(10) : 1327-1344.
  • 9Diebel J, Thrun S. An Application of Markov Random Fields to Range Sensing//Proc of Advances in Neural Information Processing Systems. Vancouver, Canada, 2005 : 291-298.
  • 10Lu Jiangbo, Min D, Pahwa R S, etal. A Revisit to MRF-Based Depth Map Super-Resolution and Enhancement//Proc of the IEEE International Conference on Acoustics, Speech and Signal Process- ing. Prague, Czech Republic, 2011:985-988.

共引文献11

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部