摘要
讨论了阶被|G|的最小素因子p整除的所有非正规循环子群的正规化子皆极大的可解群(文中称满足条件的群为NPM-群)。得到了下面结果:(1)G为可解NPM-群且G的Sylow p-子群P为G的极大子群时给出了G的结构;(2)若G为可解NPM-群且P不是G的极大子群,则G或者为p-闭群,或者为p-幂零群。
In this paper, we concenter a class of group such that all the non-normal cyclic subgroup whose order are divided by the minimal divider p of |G| have maximal normalizer(we call such a group an NPM-group). We give some properties of solvable NPMgroup.(1) If G is an NPM-group and the Sylow p-subgroup P of G is maximal in G, then we give the structure of G;(2) If G is an NPMgroup and P is not maximal in G, then G is either p-closed or p-nilpotent.
出处
《山西大同大学学报(自然科学版)》
2016年第5期7-9,共3页
Journal of Shanxi Datong University(Natural Science Edition)
基金
山西大同大学青年基金项目[2009Q14]
山西大同大学博士科研启动项目[2014-B-08]
关键词
极大子群
正规化子
P-幂零群
P-闭群
maximal subgroup
normalizer
p-nilpotent group
p-closed group