期刊文献+

决策树算法及其在乳腺疾病图像数据挖掘中的应用 被引量:9

Decision Tree and Its Application in the Data Mining of Breast Disease Images
下载PDF
导出
摘要 介绍了ID3决策树算法建立决策树的基本原理 ,着重介绍了决策树的修剪问题和两种典型的修剪算法———减少分类错误修剪算法和最小代价 复杂度修剪算法 ,并利用介绍的决策树算法和修剪算法对乳腺疾病图像进行数据挖掘 ,得到了一些有实际参考价值的规则 ,获得了很高的分类准确率 ,证明了决策树算法在医学图像数据挖掘领域有着广泛的应用前景。 Data mining is the nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. It can provide an useful path to acquire knowledge automatically. Decision tree classification algorithm is one of the most widely used algorithms in data mining. In this paper, ID3 decision tree constructing algorithm and two typical decision tree pruning algorithms are firstly analyzed. Then the introduced decision tree algorithms are applied to the data mining of the breast disease images and some valuable rules are obtained, greatly verifying the great potential of the decision tree algorithm to the data mining of medical images.
出处 《计算机应用研究》 CSCD 北大核心 2002年第9期78-79,45,共3页 Application Research of Computers
关键词 决策树算法 乳腺疾病 数据挖掘 临床诊断 医学图像 专家系统 Data Mining Decision Trees Decision Tree Pruning Rules
  • 相关文献

参考文献3

二级参考文献4

  • 1洪家荣,计算机学报,1991年,6卷
  • 2洪家荣,Int J Computer Inf Sci,1985年,14卷,6期,421页
  • 3Tu Peilei,Proceedings of the 1992 IEEE International Conference on Tools for Artificial Intelligence,1992年
  • 4Hong J R,Internat J Comput Infor-mation Sci,1985年,14卷,6期,421页

共引文献184

同被引文献142

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部