期刊文献+

基于多描述子分层特征学习的图像分类 被引量:3

Image classification based on multi-descriptor hierarchical feature learning
下载PDF
导出
摘要 为解决图像分类任务中词袋(Bag-of-Words)模型分类算法单一局部描述子信息缺失、特征量化误差较大、图像特征表现力不足等问题,提出一种基于多描述子分层特征学习的图像分类方法.结合尺度不变特征变换(SIFT)与形状核描述子(KDES-S)进行局部特征提取,并构建分层特征学习结构来减少编码过程中的量化误差,最后将图像特征分层归一化后进行线性组合并利用线性支持向量机(SVM)进行训练和分类.在Caltech-101、Caltech-256、Scene-15数据库上进行实验,结果表明:相比其他图像分类方法,本文方法在分类准确率上具有显著提升. To address the problem that Bag-of-Words model still has several drawbacks such as the scarcity of information in single local descriptor,large quantization error and lack of representation upon image features in image classification tasks,an image classification method based on multi-descriptor hierarchical feature learning is proposed. Combing scale invariant feature transform( SIFT) and kernel descriptors-shape( KDES-S) features,a hierarchical structure is used to reduce quantization error in encoding process,which extracts local features. After that,image features in each layer are normalized respectively,the liner combination of which is the final feature representation for linear support vector machine( SVM) classifier. Experiments are conducted on datasets Caltech-101,Caltech-256 and Scene-15, and experimental results show that the proposed method improves the classification accuracy significantly in comparison with other algorithms.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第11期83-89,共7页 Journal of Harbin Institute of Technology
基金 国家重点基础研究计划(2014CB340400) 天津市自然科学基金(15JCYBJC15500)
关键词 图像分类 分层特征学习 分层归一化 image classification hierarchical feature learning hierarchical normalization
  • 相关文献

参考文献4

二级参考文献188

  • 1PANDA N, CHANG E Y. Efficient top-k hyperplanequery processing for multimedia information retrieval[C]//Proceedings of the 14th annual ACMinternational conference on Multimedia. New York, NY:ACM, 2006: 317-326.
  • 2LU Zhiwu, IP H H S. Image categorization with spatialmismatch kernels[C]//IEEE Conference on ComputerVision and Pattern Recognition. Miami, FL: IEEE,2009: 397-404.
  • 3SONG X,JIAO L C,YANG S,et al. Sparse coding andclassifier ensemble based multi-instance learning forimage categorization [J]. Signal Processing, 2013,93(1) :1-11.
  • 4RUSSELL B C, FREEMAN W T, EFROS A A, et al.Using multiple segmentations to discover objects andtheir extent in image collections [C] //IEEE Conferenceon Computer Vision and Pattern Recognition.Piscataway, NJ; IEEE, 2006: 1605-1614.
  • 5VAILAYA A,FIGUEIREDO MAT,JAIN A K, et al.Image classification for content-based indexing [J].IEEE Transactions on Image Processing, 2001, 10( 1):117-130.
  • 6LI F F,PERONA P. A bayesian hierarchical model forlearning natural scene categories [C] //IEEE ComputerSociety Conference on Computer Vision and PatternRecognition. Piscataway, NJ: IEEE, 2005: 524-531.
  • 7LIU D,CHEN T. Unsupervised image categorization andobject localization using topic models andcorrespondences between images [C] //InternationalConference on Computer Vision. Piscataway. NJ : IEEE,2007: 1-7.
  • 8FERGUS R, PERONA P, ZISSERMAN A. Object classrecognition by unsupervised scale-invariant leaming[C]//IEEE Conference on Computer Vision and PatternRecognition. Piscataway,NJ; IEEE, 2003 : 264-271.
  • 9LIU Y,GOTO S,IKENAGA T. A robust algorithm for textdetection in color images [C] //Proceedings of the EighthInternational Conference on Document Analysis andRecognition. Piscataway, NJ; IEEE, 2005 ; 399-403.
  • 10CHEN Y,WANG J Z. Image categorization by learningand reasoning with regions [J]. The Journal of MachineLearning Research,2004,5( 12) ; 913-939.

共引文献42

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部