期刊文献+

具有柔性悬架的履带式移动底盘设计及其越障机理分析 被引量:8

Design and obstacle-surmounting mechanism analysis of crawler type mobile chassis with flexible suspension
下载PDF
导出
摘要 面向未知环境探测与侦查作业的机器人在执行任务时,将面对各种复杂的非结构化的障碍地形,因此,要求移动机器人具有较高的地形适应性与通过性。设计了1种采用柔性悬架的被动适应地形的履带行走机构,重点分析了柔性悬架的履带底盘的越障机理,并通过物理样机进行了攀越凸台与连续台阶地形的越障试验。试验结果表明:采用该柔性悬架的履带式移动底盘可被动地适应起伏地形,具有较强的地形通过性与运动平稳性;该底盘可以应用于对运动通过性与稳定性要求较高的移动机器人的设计。 The robot will face complex unstructured terrain obstacles with unknown environment exploration and investigation work. Therefore, the mobile robot is required to have high terrain adaptability and traffieability. This paper designs a tracked walking mechanism with passive adaptive terrain, and focuses on obstacle-surmounting mechanism analysis of crawler type mobile chassis with flexible suspension. The obstacle test of climbing convex sets and continuous steps with physical prototype shows that the crawler type mobile chassis with the flexible suspension can be used to passively adapt to the undulating terrain and has strong terrain trafficability and movement stability; and the chassis can be applied to the design of a mobile robot with higher motion and stability requirements.
出处 《中国科技论文》 CAS 北大核心 2016年第16期1813-1816,共4页 China Sciencepaper
基金 国家自然科学基金资助项目(51205391) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 移动机器人 履带行走机构 独立柔性悬架 地形适应性 mobile robot tracked walking mechanism independent flexible suspension terrain adaptability
  • 相关文献

参考文献5

二级参考文献28

  • 1郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. 被引量:106
  • 2陶建国,邓宗全,高海波,胡明.六圆柱-圆锥轮式月球车的设计[J].哈尔滨工业大学学报,2006,38(1):4-7. 被引量:12
  • 3iRobot Corporation. Small Unmanned Ground Vehicle (SUGV) [EB/OL]. (2008-05-12) [2009-03-18]. http://www.irobot.com/ sp.cfm?pageid=219.
  • 4Chiba Institute of Technology. Hibiscus, The New Rescue Robot[EB/OL]. (2006-06-05) [2009-03-18]. http://www. techfresh.net/hibiscus-the-new-rescue-robot.
  • 5Chen C X, Trivedi M M. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 1993: 1349-1356.
  • 6Choi B S, Song S M. Fully automated obstacle-crossing gaits for walking machines[J]. IEEE Transactions on Systems, Man and Cybernetics, 1998, 18(6): 952-964.
  • 7Liu J G, Wang Y C, Ma S G, et al. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2005: 36-41.
  • 8Zhengyou Zhang.A stereovision system for a planetary rover: calibration, correlation, registration, and fusion[J].Machine Vision and Applications.1997(1)
  • 9Duke M B,Piters C M.Stregies for the scientific exploration of the moon[].AIAA Space Conference and Exposition.2001
  • 10Volpe R,Estlin,Laubach S.Enhanced Mars Rover Navigation Techniques[].Proceedings of the IEEE International Conference on Robotics and Automation.2000

共引文献121

同被引文献41

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部