摘要
基于格拉姆矩阵(Gram matrix),利用遗传算法给出一种优化压缩感知波达方向测量矩阵的方法。对阵元进行不重复采样,构造测量矩阵;根据稀疏字典得到压缩感知DOA的感知矩阵,并由其构造格拉姆矩阵;以所得格拉姆矩阵非对角元素的平方和作为遗传算法的适应度值,利用遗传算法求解出最佳采样阵元。仿真实验显示,以所给方法设计的测量矩阵,在采样阵元较少且信噪较低的情形下,仍具有较好的DOA估计性能。
Based on Gram matrix,a method of optimizing the measurement matrix of compressive sensing DOA is presented by using genetic algorithm.Against array elements to carry out non repeated sampling,and construct the measurement matrix.According to the sparse dictionary,the sensing matrix of compressive sensing DOA is obtained,and the Gram matrix is constructed therewith.Take the sum of squares of the non-diagonal elements in the constructed Gram matrix as the fitness value of the genetic algorithm,and use this algorithm to pick out the Optimum sampling array element.Experimental simulation results show that,even in case of less sampling array element and low signal noise ratio,the measurement matrix given by the presented algorithm is of good DOA estimation performance.
出处
《西安邮电大学学报》
2016年第6期93-97,共5页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金资助项目(61402365)
陕西省科技工业攻关资助项目(2013K06-33)
关键词
遗传算法
压缩感知
波达方向
测量矩阵
格拉姆矩阵
genetic algorithm
compressive sensing
direction of arrival(DOA)
measurement matrix
Gram matrix