期刊文献+

基于遗传算法的压缩感知DOA测量矩阵设计 被引量:1

Design of compressive sensing DOA measurement matrix based on genetic algorithm
下载PDF
导出
摘要 基于格拉姆矩阵(Gram matrix),利用遗传算法给出一种优化压缩感知波达方向测量矩阵的方法。对阵元进行不重复采样,构造测量矩阵;根据稀疏字典得到压缩感知DOA的感知矩阵,并由其构造格拉姆矩阵;以所得格拉姆矩阵非对角元素的平方和作为遗传算法的适应度值,利用遗传算法求解出最佳采样阵元。仿真实验显示,以所给方法设计的测量矩阵,在采样阵元较少且信噪较低的情形下,仍具有较好的DOA估计性能。 Based on Gram matrix,a method of optimizing the measurement matrix of compressive sensing DOA is presented by using genetic algorithm.Against array elements to carry out non repeated sampling,and construct the measurement matrix.According to the sparse dictionary,the sensing matrix of compressive sensing DOA is obtained,and the Gram matrix is constructed therewith.Take the sum of squares of the non-diagonal elements in the constructed Gram matrix as the fitness value of the genetic algorithm,and use this algorithm to pick out the Optimum sampling array element.Experimental simulation results show that,even in case of less sampling array element and low signal noise ratio,the measurement matrix given by the presented algorithm is of good DOA estimation performance.
作者 杨洁 刘朋露
出处 《西安邮电大学学报》 2016年第6期93-97,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61402365) 陕西省科技工业攻关资助项目(2013K06-33)
关键词 遗传算法 压缩感知 波达方向 测量矩阵 格拉姆矩阵 genetic algorithm compressive sensing direction of arrival(DOA) measurement matrix Gram matrix
  • 相关文献

参考文献6

二级参考文献63

  • 1Baraniuk R G, Candes E J, Elad M, et al.. Applications of sparse representation and compressive sensing [J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 5Baraniuk R and Steeghs P. Compressive radar imaging [C] 2007 IEEE International Radar Conference, Boston Massachusetts, USA, April 17-20, 2007: 128-133.
  • 6Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 7Shi G M, Chert X Y, Qi F, et al.. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(4): 379-383.
  • 8Subotic N S, Thelen B, Cooper K, et al.. Distributed radar waveform design based on compressive sensing considerations [C]. 2008 IEEE International Radar Conference, Rome, Italy, May 26-30,2008: 1-6.
  • 9Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 10Eftekhari A, Babaie-Zadeh M, Jutten C, et al.. Robust-SL0 for stable sparse representation in noisy settings [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, April 19-24, 2009: 3433-3436.

共引文献81

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部