期刊文献+

基于符号执行的Python攻击脚本分析平台 被引量:3

Python Attack Script Analysis Platform Based on Symbolic Execution
下载PDF
导出
摘要 传统的静态分析方法大多不能准确处理脚本与网络交互的过程,且会引入不可达路径,动态分析则需要搭建实验环境和手工分析。针对上述问题,提出一种基于符号执行的Python攻击脚本分析平台Py Ex Z3+。通过对Python脚本的动态符号执行及路径探索,可以获得触发攻击的输入流量及相应的输出攻击载荷,以此实现对Python攻击脚本的自动化分析。采用循环识别及运行时解析等优化策略,使程序更快进入目标代码。实验结果表明,Py Ex Z3+相比CHEF,Py Ex Z3等符号执行工具,具有更高的路径覆盖率和执行效率,同时Py Ex Z3+能够对目标脚本程序进行动态检测,实现高效、可行的自动化分析。 The traditional static analysis method cannot handle the interaction between the script and the network,and it introduces inaccessible path.The dynamic analysis needs to set up the experimental environment and needs manual analysis.To solve these problems,this paper proposes a Python attack script analysis platform called PyExZ3 +based on symbolic execution.Through the dynamic symbol execution and path exploration of Python script,it can get the input traffic and the corresponding output attack payload,which can realize the automatic analysis of Python attack script. PyExZ3 + uses loop identification and run time solver optimization strategy to improve the path coverage and the efficiency of symbolic execution.Experimental results show that PyExZ3 +has a higher path coverage and execution efficiency compared with the existing symbolic execution tools,such as CHEF and PyExZ3.Besides,PyExZ3 +can dynamically detect the target script’s payload and perform feasible automated analysis efficiently.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第11期139-146,共8页 Computer Engineering
基金 中国信息安全评测中心科研项目(CNITSEC-KY-2013-009/2)
关键词 符号执行 PYTHON语言 动态分析 测试数据生成 攻击脚本 路径探索 symbolic execution Python language dynamic analysis test data generation attack script path exploration
  • 相关文献

参考文献2

二级参考文献96

  • 1陈火旺,王戟,董威.高可信软件工程技术[J].电子学报,2003,31(z1):1933-1938. 被引量:115
  • 2林锦滨,张晓菲,刘晖.符号执行技术研究[C].全国计算机安全学术交流会论文集(第二十四卷).合肥:中国科学技术大学出版社,2009:404-408.
  • 3赵云山,宫云战.基于符号分析的静态缺陷检测技术研究[博士学位论文].北京:北京邮电大学,2012.
  • 4Godefroid P,Klarlund N,Sen K.DART:Directed Automated Random Testing[J].ACM SIGPLAN Notices,2005,40(6):213-223.
  • 5Sen K,Marinov D,Agha G.CUTE:A Concolic Unit Testing Engine for C[J].ACM SIGSOFT Software Engineering Notes,2005,30(5):263-272.
  • 6Burnim J,Sen K.Heuristics for Scalable Dynamic Test Generation[C]//Proceedings of ASE’08.L’aquila,Italy:[s.n.],2008:443-446.
  • 7Qu Xiao,Robinson B.A Case Study of Concolic Testing Tools and Their Limitations[C]//Proceedings of ESEM’11.Banff,Canada:IEEE Press,2011:117-126.
  • 8Godefroid P.Higher-order Test Generation[C]//Proceedings of PLDI’11.San Jose,USA:ACM Press,2011:258-269.
  • 9Godefroid P.Compositional Dynamic Test Generation[C]//Proceedings of POPL’07.Nice,France:ACM Press,2007:47-54.
  • 10Chipounov V,Kuznetsov V,Candea G.S2E:A Platform for In-vivo Multi-Path Analysis of Software Systems[J].ACM Transactions on Computer Systems,2012,30(1):1-49.

共引文献75

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部