期刊文献+

基于区域相似度的局部拟合活动轮廓模型 被引量:2

Local Fitting Active Contour Model Based on Regional Similarity
下载PDF
导出
摘要 针对局部二值化拟合(LBF)模型不能分割纹理图像和收敛速度慢等问题,提出一种结合局部拟合与区域间相似度的活动轮廓模型。该模型在LBF模型中引入基于图像梯度信息的加速因子和基于相似度局部拟合的相似项,通过在能量泛函中加入区域间灰度概率分布的相似信息,抑制图像噪声和提高分割准确度,引入梯度信息,能够放大目标轮廓附近驱动力,提高图像分割速度。实验结果表明,与LBF模型相比,该模型对噪声有较强的鲁棒性,能够分割纹理和灰度不均匀图像,且具有较高的分割速率。 To overcome the disadvantage of Local Binary Fitting(LBF)model that it cannot segment texture image and has too slow convergence speed,an active contour model combining local fitting energy and regional similarity is presented.It introduces an acceleration factor based on image gradient information and a similar term based on local similarity fitting.Image noise can be inhibited and segmentation accuracy is improved by introducing similarity information of regional intensity distributions into the energy function.The speed of image segmentation can be improved by introducing gradient information to amplify the driving force nearby the objective contour.Compared with the LBF model,the presented model can be more rubust to noise,can segment texture image,and has a high rate of segmentation.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第11期249-254,共6页 Computer Engineering
基金 国家自然科学基金(61402274) 陕西师范大学中央高校基本科研业务费专项资金项目(GK201402040 GK201302029) 陕西师范大学实验技术研究项目(SYJS201314)
关键词 活动轮廓模型 局部二值化拟合 图像梯度 纹理特性 巴氏系数 active contour model Local Binary Fitting (LBF) image gradient texture characteristics Bhattacharyya coefficient
  • 相关文献

参考文献3

二级参考文献63

  • 1Zhang Y. Advances in Image and Video Segmentation. Her- shey, PA; IRM Press, 2006.
  • 2Osher S, Sethian J A. Fronts propagating with curvature- dependent speed: Algorithms based on Hamilton-Jacobi for- mulation. Journal of Computational Physics, 1988, 79 (1) : 12-49.
  • 3Osher S, Fedkiw R. Level Set Methods and Dynamics Im- plicit Surfaces. New York: Springer, 2003.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988: 1(4): 321-331.
  • 5Xu C, Prince J L. Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7 (3): 359- 369.
  • 6Suri J S, Liu K, Singh S, Laxminarayan S N, Zeng X, Re- den L. Shape recovery algorithms using level sets in 2D/3D medical imagery.. A state-of-the-art review. IEEE Transac- tions on Information Technology in Biomedicine, 2002, 6(1) : 8-28.
  • 7Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 8Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision9 1997, 22 (1) : 61-79.
  • 9Chopp D L. Computing minimal surfaces via level set curva- ture flow. Journal of Computational Physics, 1993, 106(1): 77-91.
  • 10Li C, Xu C, Gui C, Fox M D. Level set evolution without re-initialization: A new variational formulation//Proeeedings of the IEEE Conference on Computer Vision and Pattern Rec- ognition. San Diego, USA, 2005: 430-436.

共引文献86

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部