期刊文献+

基于原子预选择的音频匹配追踪算法

Audio Matching Pursuit Algorithm Based on Atomic Preselection
下载PDF
导出
摘要 匹配追踪是一种应用于信号处理的稀疏表达贪婪算法,该算法在原子选择中使用的是遍历匹配方式,其计算复杂度较高,匹配过程中需要已知完整待处理信号,难以满足实时需要。为此,提出一种新型音频匹配追踪算法。由于采用短时非完备字典对信号进行稀疏表达,使待处理信号不受长度限制,根据信号能量分布关系,在原子匹配之前预处理,以提高匹配过程的执行速度。实验结果表明,该算法在达到现有Krstulovic'快速算法信号表达效率的同时,能降低计算复杂度,提高运行速度。 The Matching Pursuit(MP)is a sparse expression greedy algorithm which is applied to signal processing.Its computation complexity is high due to traversalmatching in atom selection,and the matching process has to know the complete signal needed to be processed,which leads its limited application in real-time circumstance.To solve these problems,this paper presents a new audio matching pursuit algorithm,which adopts a short-term and non-complete dictionary to sparse by express the signal,so that the signal to be processed is free from length limit.Besides,according to the distribution relationship of signal energy,the atom is preprocessed before matching to improve the execution speed during the matching process.Experimental results show that the algorithm not only can compare the efficiency with Krstulovic′fast algorithm in signal expression,but also can reduce the computation complexity and improve the running speed.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第11期285-289,共5页 Computer Engineering
基金 国家自然科学基金(61231015) 国家"863"计划项目(2015AA016306)
关键词 匹配追踪 优化算法 稀疏表达 短时字典 音频编码 Matching Pursuit(MP) optimization algorithm sparse expression short-term dictionary audio coding
  • 相关文献

参考文献2

二级参考文献21

  • 1雷亚国,何正嘉,訾艳阳,胡桥,丁锋.混合聚类新算法及其在故障诊断中的应用[J].机械工程学报,2006,42(12):116-121. 被引量:16
  • 2Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations [ J ]. Signal Pro- cessing, 2001,81( 11 ) : 2353 -2362.
  • 3Li Y Q, Amari S I, Cichocki A. Underdetermined blind source separation based on sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 (2) : 423 - 437.
  • 4Xu T, Wang W W. A compressed sensing approach for underdetermined blind audio source separation with sparse representation[ C ]//IEEE/SP 15th Workshop on Statistical Signal Processing. Cardiff, UK, 2009 : 493 - 496.
  • 5Lee T W, Lewicki M S, Girolami M, et al. Blind source separation of more sources than mixtures using overcomplete representations[ J ]. IEEE Signal Process- ing Letters, 1999, 6(4) : 87 -90.
  • 6Donoho D L. Compressed sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52 (4): 1289 -1306.
  • 7Blumensath T, Davies M E. Compressed sensing and source separation [ C ]//The 7th International Confer- ence on Independent Component Analysis and Signal Separation. London, UK, 2007:341-348.
  • 8Aharon M, Elad M, Bruckstein A M, et al. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 ( 11 ) : 4311 - 4322.
  • 9Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Transactions on Information Theory, 2002, 48 (9) : 2558 -2567.
  • 10ZHANG L,JACK L B, NANDI A K. Fault detectionusing genetic progranuning[J]. Mechanical Systems andSignal Processing,2005, 19(2) : 271-289.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部