摘要
由于我国建材物化能和碳排放等数据缺失,在对围护结构生产阶段进行分析时,往往仅考虑几种主要建材的影响。为了解决这一问题,提出了成本能、成本和成本碳这三个参数;并基于社会经济指标,即工业万元产值能耗,提出了热力学成本综合当量系数这一概念,在此基础上提出了一种计算围护结构生产阶段能耗、耗和碳排放量的热力学模型。与传统的算法相比,提出的热力学模型将建筑造价表中所有建材考虑在内,而采用的万元产值能耗数据可以在政府公开发表的文件中找到。实例计算结果表明,生产阶段的能耗占全寿命期的12.34%,碳排放占到了15.48%;生产阶段单位建筑面积能耗为4.995GJ/m^2,这一结果与国外的研究相符,验证了本模型的可靠性。提出的模型对完善可持续建筑评价体系和制定能源政策具有重要意义。
Due to the lack of available data in China, the conventional calculation of building envelope produc- tion phase only considers the impact of a few materials. To solve this problem, three new indexes are presented, cost-based energy, cost-based exergy and cost-based carbon, and put forward a new concept, equivalent coefficient of thermodynamic cost based on social and economic indicators, energy intensity. A thermodynamic model is pro- posed to calculate the energy, exergy consumption and CO2 emission of building materials in production phase. Compared to the conventional calculation, this thermodynamic model takes full account of every material in the BOQ (bill of quantity), and the data used in the model, energy intensity, can be found in government publica- tions. The production phase of the case building is analyzed using this method, and results show that the production phase accounts for 12.34% of the life cycle energy consumption, also contributes 15.48% towards the life cycle CO2 emissions. The embodied energy of the case building is about 4. 995 GJ/m2 which matches the results from oth- er LCA research, thus verifies the validity of the proposed calculation. This model is practical and significant in im- proving sustainable building assessment tools and enacting energy policies in building sector.
作者
傅沐书
龚光彩
黎龙
王平
FU Mu-shu GONG Guang-cai LI Long WANG Ping(College of Civil Engineering, Hunan University, Changsha 410082, P.R. China)
出处
《科学技术与工程》
北大核心
2016年第31期75-81,共7页
Science Technology and Engineering
基金
湖南省科技重大专项资助项目(2010FJ1013)
国家国际科技合作资助项目(2010DFB63830)
国家科技支撑计划(2015BAJ03B00)资助
关键词
万元产值能耗
热力学成本综合当量系数
能耗
耗
碳排放
全寿命期分析
energy intensity
equivalent coefficient of thermodynamic cost
energy consumption
ex-ergy consumption
CO2 emission
life cycle analysis