期刊文献+

异类传感器多目标检测跟踪与识别随机集模型 被引量:1

Random set models of dissimilar sensors for multi-target detection,tracking and recognition
下载PDF
导出
摘要 为在空中预警监视系统中实现多异类传感器多目标联合检测、跟踪与识别,在多目标检测、跟踪的随机有限集模型基础上,进行多异类传感器多目标联合检测、跟踪与识别的理论模型与处理框架研究。通过对目标的运动学状态与目标识别属性状态统一描述,把多目标状态建模为一个用随机有限集描述的全局状态。通过对运动学传感器与属性传感器模型分析,把各异类传感器建模为一个全局传感器,并把各传感器的测量建模为一个用随机有限集描述的全局测量。根据全局状态与全局测量模型,把异类传感器多目标联合检测、跟踪与识别过程描述为Bayes滤波过程,并给出了相应的多异类传感器多目标联合检测、跟踪与识别处理框架。通过仿真试验验证了理论模型与框架的有效性。 In order to detect, track, and recognize multi-target jointly by fusion multiple dissimilar sensors in the airborne warning system, the theoretical models and processing framework for multi-target joint detec- tion, tracking and recognition of dissimilar sensors are studied based on the random finite set theory. By descri- bing the single target^s kinematics states and recognition attribute states unifiedly, the multi-target states are modeled as a global state that is described by the random finite set. By analyzing the models of a kinematic sen- sor and an attribute sensor, the dissimilar sensors are modeled as a global sensor, and the measurements of those dissimilar sensors are modeled as a global measurement. Based on the models of global state and global measurement, the process of multi-target detection, tracking and recognition of dissimilar sensors are described by Bayes filtering, and the structure of multi-target recognition of dissimilar sensors fusion is established. Simu- lation results suggest that the proposed models and processing framework are executable and effective.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第12期2685-2691,共7页 Systems Engineering and Electronics
基金 总装预研项目(51307020103)资助课题
关键词 随机有限集 多目标联合检测 跟踪与识别 多异类传感器 融合 random finite set multi-target joint detection tracking and recognition multiple dissimilarsensors fusion
  • 相关文献

参考文献3

二级参考文献52

  • 1刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1334. 被引量:71
  • 2Douglas M B,Watts Donald G.非线性回归分析及其应用[M].韦博成,万方焕,朱启图译.北京:中国统计出版社,1997:36-37.
  • 3Liu H,Bao Z.Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel[J].Lecture Notes in Computer Science,2004,3174(1):531-536.
  • 4Chen Bo,Liu Hongwei,Bao Zheng.Optimizing the data-dependent Kernel under a unified Kernel optimization framework[J].Pattern Recognition,2008,41(6):2107-2119.
  • 5Saito N,Beylkin G.Multiresolution representation using the auto-correlation functions of compactly supported wavelets[J].IEEE Trans.on Signal Processing,1993,41(12):3584-3590.
  • 6Chen G Y,Gregory D.Auto-correlation wavelet support vector machine and its applications to regression[C] // Proc.of the Second Canadian Conference on Computer and Robot Vision,2005:246-252.
  • 7Bui T D,Chen G Y,Feng L.An orthonormal-shell-Fourier descriptor for rapid matching of patterns in image database[J].International Journal of Pattern Recognition and Artifical Intelligence,2001,15(8):1213-1229.
  • 8Micha(e)l van A W.A framework for multiscale and hybrid RKHS-based approximators[J].IEEE Trans.on Signal Processing,2000,48(12):3559-3568.
  • 9冉启文,谭立英.小波分析与分数傅里叶变换及应用[M].北京:国防工业出版社,2003.
  • 10Tait P.Introduction to Radar Target Recognition[M].UK:the Institution of Electrical Engineers,2005:8-10.

共引文献19

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部