期刊文献+

基于区域Bhattacharyya相似度的SAR图像地物分类方法 被引量:3

Terrain classification of SAR images based on Bhattacharyya similarity between regions
下载PDF
导出
摘要 传统的基于像素的合成孔径雷达(synthetic aperture radar,SAR)图像地物分类方法难以有效区分起伏变化大的地物。针对该问题,提出了一种基于区域Bhattacharyya相似度的SAR图像地物分类方法。方法首先利用适当的图像分割技术获取均匀的SAR图像区域。接着定义Bhattacharyya相似度来描述区域之间的统计相似程度,并推导了其对应Gamma分布的解析表达式。最后,以图像区域为分类单元,基于最大区域Bhattacharyya相似度准则实现SAR图像地物分类。利用实测SAR图像的地物分类结果表明,该方法性能优于经典的基于像素的最大似然分类方法和支持矢量机方法,且优于基于区域的最小距离法。 Terrains with large variance are difficult to be discriminated by the traditional pixel-based classifi- cation methods for synthetic aperture radar (SAR) images. Aiming at solving this problem, an algorithm for terrain classification of SAR images based on the Bhattacharyya similarity between regions is proposed. Firstly, a proper image segmentation technology is applied to obtain homogeneous regions of the SAR image. Then, the Bhattacharyya similarity measuring the statistical proximity between regions is defined, of which the analytical expression referring to the Gamma distribution is derived. Finally, with the previous image regions as classifica- tion elements, terrain classification is implemented by a criterion of maximizing the Bhattaeharyya similarity be- tween regions. The experimental results on the real SAR image validates the superiority of the proposed algo- rithm to the pixel-based maximum likelihood classification method, support vector machine classifier and the re- gion-based method of minimizing the distance between regions.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第12期2752-2757,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61331015 61372163)资助课题
关键词 合成孔径雷达 地物分类 Bhattacharyya相似度 GAMMA分布 synthetic aperture radar (SAR) terrain classification Bhattacharyya similarity Gamma dis-tribution
  • 相关文献

参考文献5

二级参考文献66

  • 1Lee J S, Jurkevich I. Segmentation of SAR images[J],IEEE Trans. on Geoscience and Remote Sensing,1989, 27(6) : 674 - 680.
  • 2Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty[J]. IEEE Trans, on Geoscience and Remote Sen- sing, 2012, 50(4) : 1302 - 1317.
  • 3Doulgeris A P, Anfinsen S N, Eltoft T. Automated non-Gaussian clustering of polarimetric synthetic aperture radar images [J]. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (10): 3665-3676.
  • 4Koller D, Friedman N. Probabilistic graphical models : princi- ples and techniques[M]. Cambridge: The MIT Press, 2009.
  • 5Zhang L, Ji Q. Image segmentation with a unified graphical model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 (8) : 1406 - 1425.
  • 6Srinivas U, Chen Y, Monga V. Exploiting sparsity in hyperspectral image classification via graphical models[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3) : 505 - 509.
  • 7Frey D, Butcnuth M, Straub D. Probabilistic graphical models for flood state detection of roads combining imagery and DEM[J]. IEEE Geoscience arm Remote Sensing Letters, 2012, 9(6) : 1051 - 1055.
  • 8Li Y, Li J, Chapman M A. Segmentation of SAR intensity imagery with a voronoi tessellation, Bayesian inference, and re- versible jump MCMC algorithm[J]. IEEE Trans. on Geo- science and Remote Sensing, 2010, 48(4) : 1872 - 1881.
  • 9Zhang L, Ji Q. A Bayesian network model for automatic and interactive image segmentation [J]. IEEE Trans. on Image Processing, 2011, 20(9): 2582 - 2593.
  • 10Weiss Y, Freeman W T. On the optimality of solutions of the max- product belief propagation algorithm in arbitrary graphs[J]. IEEE Trans. on Information Theory, 2001, 47(2) : 736 - 744.

共引文献19

同被引文献19

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部