期刊文献+

基于网页排名算法的敏感性分析

The sensitivity analysis based on Web page ranking algorithm
下载PDF
导出
摘要 对网页排名算法的敏感性分析,能够进一步了解关于算法模型所给出的欢迎度评分的原理和条件范围。基于参数的不同变化会导致不同程度的敏感性这一问题,本文通过对算法的数学内容分析,研究Page Rank和HITS的敏感性问题。在分析矩阵G对于比例参数α、超链接矩阵H和个性化向量vT的依赖性的基础上,分析了3个特定参数对Page Rank向量的影响,最后,对HITS的敏感性进行分析。 The sensitivity analysis of Web page ranking algorithm can achieve a further understanding on principle and condition scope of the score of welcome degree which the algorithm model given. Different changes in parameters will result in different degrees of sensitivity. Based on this problem, this article discusses the sensitivity of PageRank and HITS by mathematical content analysis of the algorithm. On the basis of analyzing the dependence of matrix G on the ratio parameter α, hypedink matrix H and personalized vector v^T, this article analyzes the influence of three specific parameters on PageRank vector. Finally, it considers the sensitivity of HITS.
出处 《电子设计工程》 2016年第22期77-79,共3页 Electronic Design Engineering
基金 江苏省社科联研究基金(201035)
关键词 PAGERANK HITS 敏感性分析 比例参数α 超链接矩阵H 个性化向量v^T PageRank HITS sensitivity analysis scale parameter α hyperlinks matrix H personalized vector v^T
  • 相关文献

参考文献1

二级参考文献30

  • 1Borodin A, Roberts G O, Rosenthal J S, Tsaparas P. Link analysis ranking: Algorithms, theory, and experiments. ACM Transactions on Internet Technology, 2005, 5 (1) 231-297.
  • 2Du Y, Shi Y, Zhao X. Using spam farm to boost PageRank// Proceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web. New York, USA, 2007: 29-36.
  • 3Henzinger M R, Motwani R, Silverstein C. Challenges in web search engines. Special Interest Group on Information Retrieval Form, 2002, 3"/(2) 11 22.
  • 4Zhou ]3, Pei J. Link spare target detection using page farms. ACM Transactions on Knowledge Discovery from Data, 2009, 3(3): 13.
  • 5Gy6ngyi Z, Garcia-Molina H. Link spam alliances// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway, 2005:517-528.
  • 6Becchetti L, Castillo C, Donato D. Link analysis for web spare detection. ACM Transactions on the Web (TWEB), 2008, 2(1): 2.
  • 7Abernethy J, Chapelle O, Castillo C. Graph regularization methods for web spam detection. Machine Learning, 2010, 81(2) : 207-225.
  • 8Leon-Suematsu Y I, Inui K, Kurohashi S. Web spam detection by exploring densely connected subgraphs//Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. Washington, USA, 2011:124 129.
  • 9Brin S, Page L. The anatomy of a largeLscale hypertextual web search engine. Computer Networks and ISDN Systems, 1998, 30(1 7): 107 117.
  • 10! Kleinberg J. Authoritative sources in a hyperlinked enviro / ment. Journal of the ACM, 1999, 46(5)= 604-632.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部