期刊文献+

氯化锶搅拌结晶过程的数值模拟及影响因素分析

The Numerical Simulation and Analysis of the Influence Factors of the Mixing and Crystallization Process of Strontium Chloride
下载PDF
导出
摘要 传统的氯化锶结晶方法是建立在实验的基础上,通过半经验的方式对结晶器的结晶过程及其放大进行研究,此方法不仅耗时久,而且由于结晶过程的放大,会引起更加复杂的流体流动而产生较差的效果。本课题拟利用在传统欧拉(Euler)双流体模型的基础上加载群体平衡模型(PBM),以考虑实际存在的晶体颗粒破碎等动力学行为,与CFD耦合计算了在不同搅拌转速和不同叶数的浆叶下氯化锶晶体颗粒的成长变化过程及其浓度分布的固液两相流场。从而得出在同一温度场下,氯化锶结晶过程的最佳转速为50 rpm与最优搅拌桨叶数为2叶,为工业氯化锶的生产提供了一定的参考和理论依据。 The traditional method of crystallization of strontium chloride is established on the basis of experiment, the semi empirical way of crystallization process of mould and amplification were studied. The method is not only time-consuming, but due to the amplification of the crystallization process, will cause the fluid flow more complex and have poor effect. The project intends to use the traditional Ola (Euler) based on the two fluid model loading population balance model (PBM), the crystal grain crushing behaviors to consider the actual existence, calculated in the speed and different number of leaves of different stirring blades under strontium chloride crystal growth process and the concentration distribution of the liquid phase flow coupled with CFD. So that at the same temperature field, the best rotational speed for the crystallization process of strontium chloride is 50 rpm and the optimum mixing blade number is two, which provides some reference and theoretical basis for the production of strontium chloride.
作者 张峰 张亚新 Zhang Feng Zhang Yaxin(College of Chemistry and Chemical Engineering, Xiniiang University, Unanqi 830046, Chin)
出处 《广东化工》 CAS 2016年第21期19-21,共3页 Guangdong Chemical Industry
关键词 氯化锶 结晶 群体平衡方程 计算流体力学 strontium chloride crystah population balance modeh CFD
  • 相关文献

参考文献3

二级参考文献20

  • 1Sha Z, Palosaari S. Modeling and simulation of crystal size distribution in imperfectly mixed suspension crystallization. Journal of Chemical Engineering of Japan, 2002, 35 (11): 1188-1195
  • 2Wei H , Garside J. Application of CFD modeling to precipitation systems. Trans. IChemE, 1997, 75: 219-227
  • 3Marchisio D L, Barresi A A. CFD simulation of mixing and reaction: the relevance of the micro-mixing model. Chemical Engineering Science, 2003, 58:3579-3587
  • 4Jaworski Z, Nienow A W. CFD simulation of continuous precipitation of barium sulphate in a stirred tank. Chemical Engineering Journal, 2003, 91:167-174
  • 5Wei H, Zhou W, Garside J. Computational fluid dynamics modeling of the precipitation process in a semi-batch crystallizer. Ind. Eng. Res., 2001, 40:5525-5261
  • 6Wang L, Fox R O. Application of in situ adaptive tabulation to CFD simulation of nano-crystal formation by reactive precipitation. Chemical Engineering Science, 2003, 58:4387-4401
  • 7Vicum L, Ottinger S, Mazzotti M, Makowski L, Baldyga J. Multi-scale modeling of a reactive mixing process in a semibateh stirred tank. Chemical Engineering Science, 2004, 59:1767-1781
  • 8Yang G, Louhi-kultanen M, Kallas J. The CFD simulation of programmed batch cooling crystallization. Chemical Engineering Translations, 2002, 1:83-88
  • 9Hounslow M J, Ryall R L, Marshall V R. A discretized population balance for nucleation, growth, and aggregation. AIChEJournal, 1988, 34 (11): 1821-1832
  • 10Hounslow M J. A discretized population balance for continuous systems at steady state. AIChE Journal, 1990, 36 (1): 106-116

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部