摘要
改进集是研究向量优化问题的一个十分重要的工具。首先证明了改进集的有关拓扑闭包和拓扑内部的一些性质。进一步,在改进集的条件下给出了拓扑向量空间中两个非空集合之和的拓扑内部与拓扑闭包的一些运算性质,并得到了它的一些等价刻画。最后给出了一些具体的例子对主要结果进行了解释。
Improvement sets are an important tool with which to study the vector optimization problems.In this paper,first some properties of topological closures and topological internal of the improvement set are proved.Furthermore,some operational characterizations of topological closures and topological internal of sum for two nonempty sets operations are presented by using improvement sets in topological vector space,and some equivalent characterizations are obtained.In addition,some examples are given to illustrate our main results.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第6期5-7,共3页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11301574
No.11271391)
关键词
向量优化
改进集
拓扑闭包
拓扑内部
vector optimization
improvement set
topological closures
topological internal