期刊文献+

MFWT:一种推荐学术论文的混合模型 被引量:4

MFWT: a Hybrid Model for Academic Paper Recommender
原文传递
导出
摘要 为了改善概率矩阵分解模型进行学术论文推荐时存在的数据稀疏性和冷启动问题,提出了一种混合推荐模型——主题矩阵分解模型.通过提出的作者-会议-时间-主题模型和传统的潜在狄利克雷分布主题模型分别构建用户和论文的主题特征,并通过这2类特征分别增强概率矩阵分解模型的用户潜在因子特征向量和项目潜在因子特征向量.实验结果表明,该模型较好地解决了概率矩阵分解模型的数据稀疏性问题和冷启动问题,有效提升了学术论文的推荐效果. The inherent data sparsity and cold start problems in probabilistic matrix factorization( PMF)limit the effect of academic paper recommender. To remedy the shortcomings and enhance the recommender effect,a new hybrid recommender model named as matrix factorization with topic( MFWT) was proposed. The model constructs topic characteristics of both users and papers using the author-conferencetopic over time( ACTOT) model and the traditional latent dirichlet allocation topic model respectively,enhancing the corresponding user and paper latent factor characteristic vectors of PMF model. Experiments show that the model well overcomes the data sparsity problem and the cold start problem of PMF and increases the effect of academic paper recommender.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第4期24-29,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61471060)
关键词 概率矩阵分解 主题模型 混合推荐模型 数据稀疏性 probabilistic matrix factorization topic model hybrid recommender model data sparsity
  • 相关文献

参考文献3

二级参考文献59

  • 1Ma H, King I, Lyu M. Learning to recommend with social trust ensemble[CJ //Proc of the 32nd ACM Int Conf on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210.
  • 2Ma H, Yang H, Lyu M, et al. Sorce. Social recommendation using probabilistic matrix factorization[CJ I/Proc of the 17th ACM Conf on Information and Knowledge Management. New York: ACM, 2008: 931-940.
  • 3Yeung A C, Iwata T. Strength of social influence in trust networks in product review sites[C] I/Proc of the 4th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2011: 495-504.
  • 4Yang X, Steck H, Liu Y. Circle-based recommendation in online social networks[CJ I/Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1267-1275.
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[CJ I/Proc of the 4th ACM Conf on Recommender Systems. New York: ACM, 2010: 135-142.
  • 6lin R, ChaiJ, Si L. An automatic weighting scheme for collaborative filtering[C] //Proc of the 27th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2004: 337-344.
  • 7Xue G, Lin C, Yang Q, et al. Scalable collaborative filtering using cluster-based smoothing[CJ //Proc of the 28th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2005: 114-121.
  • 8Sarwar B, Karypis G, KonstanJ, et al. Item-based collaborative filtering recommendation algorithms[CJ IIProc of the 10th Int Conf on World Wide Web. New York: ACM, 2001: 285-295.
  • 9CannyJ. Collaborative filtering with privacy via factor analysis[CJ IIProc of the 25th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2002: 238-245.
  • 10Hofmann T. Collaborative filtering via gaussian probabilistic latent semantic analysis[CJ //Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Informaion Retrieval. New York: ACM, 2003: 259-266.

共引文献109

同被引文献18

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部