期刊文献+

面向遥感影像匹配的特征点检测算子性能评估 被引量:6

Performance Evaluation of Interest Point Detectors for Remote Sensing Image Matching
下载PDF
导出
摘要 在基于特征点的匹配方法中,特征点检测是非常关键的步骤,直接影响到匹配的效果.为了确立遥感影像匹配过程中特征点算子的选择依据,本文从光谱、时相和尺度(分辨率)3个方面,选择不同类型的遥感影像作为实验数据,以特征点重复率作为评估标准,对当前主流的Harris-Laplace、Hessian-Laplace、Do G和M_SER 4种特征点检测算子进行性能评估,并分析了每一种算子的优缺点和适用范围.实验结果表明:在光谱和时相方面,Hessian-Laplace的平均重复率达到40%,性能最好,其次为Harris-Laplace和Do G,而M_SER的性能相对较弱;而对于尺度方面,M_SER表现出最好的性能,平均重复率达到35%,其次为Hessian-Laplace,而Harris-Laplace和Do G的性能较弱. Interest point detection is a crucial step for the image matching because it directly influences the matching results. In order to establish the criterion of selecting the interest point detectors for remote sensing image matching, different remote sensing images in terms of spetrum, time and scale were selected to evaluate the four famous interest point detectors including Harris-Laplace, Hessian-Laplace, Difference of Gaussian (DoG) and Maximally Stable Extremal Regions (MSER), and the repeatability was used as the evaluation criterion. The merits, the demerits and application of these detectors were also discussed. The experimental results show that for spectrum and time variation, the repeatability of Hessian-Laplace detector achieves 40% whichperforms best, followed by Harris-Laplace and DoG, whereas MSER performs worst. For image scale changes, MSER outperforms other detectors and its repeatability is 35% , followed by Hession-Laplace, whereas Harris-Laplace and DoG perform worse than other detectors.
作者 叶沅鑫 慎利
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第6期1170-1176,共7页 Journal of Southwest Jiaotong University
基金 国家973计划资助项目(2012CB719901) 国家自然科学基金资助项目(41401369 41401374)
关键词 遥感影像 影像匹配 特征点检测 重复率 remote sensing images image matching interest point detection repeatability
  • 相关文献

参考文献3

二级参考文献36

  • 1张登荣,俞乐,蔡志刚.点特征和小波金字塔技术的遥感图像快速匹配技术[J].浙江大学学报(理学版),2007,34(4):465-468. 被引量:13
  • 2Lowe D (3. Distinctive Image Features from Scale Invariant Key Points [J]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 3Mikolajczyk K, Schmid C. A Performance Evalua- tion of Local Descriptors[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005,27 (I0) :1615-1630.
  • 4Mortensen E N,Deng H L,Shapiro I.. A SIFT De- scriptor with Global Context[C]. 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition, 2005.
  • 5Belongie S,Malik J,Puzicha J. Shape Matching and Object Recognition Using Shape Contexts[J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2002,24 (4) : 509-522.
  • 6Morrone M C,()wens R A. Feature Detection from Local Energy [J] Pattern Recognition Letters, 1987,6(5) :303-313.
  • 7Kovesi P. Image Features from Phase Congruency [J]. Journal of Computer Vision Research, 1999, 1(3) .. 1-26.
  • 8Kovesi P. Phase Congruency Detects Corners and Edges[C]. The 7th Australasian Conference on Digital Image Computing Techniques and Applica- tions, 2003.
  • 9ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11) : 977-1000.
  • 10KIM J, FESSLER J A. Intensity-based image registration using robust correlation coefficients[]]. IEEE Transactions on Medical Imaging, 2004, 23( 11 ) : 1430-1444.

共引文献30

同被引文献47

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部