期刊文献+

城市尺度下基站人群时空预测模型 被引量:3

Spatio-temporal analysis and forecast of population of cellular in city scale
下载PDF
导出
摘要 利用3G用户上网数据推演了群体分布动态聚散过程,并依此提出了基站人群时空预测模型与方法。相比于以往单从时间序列学习或从整体空间时空学习预测的方法,避免了对时空信息平滑作用的影响。经实验验证,该预测模型在细粒度的人群预测上有更好的预测性能,尤其适用于对突发性人群的预测,有助于更好地理解人群分布,并为移动网络优化管理提供很好的理论指导。 This paper studied the time and space distributions of city-scaled residents by making use of 3 G mobile network da- ta, and proposed a spatio-temporal forecasting model of cellular population. The inspiration came from the real world accumulation and dispersion of crowd. For importing the dynamic mobility, this model could avoid the effect of data smoothing widely embedded in previous models based on time series and overall space data. Through experimental verification, this model has been proved that it owns a better prediction performance on a fine-grained scale, especially in the prediction of incident crowd. This study and mode helps to better understand the crowd distribution and provide support for wireless network base station research.
作者 孙莹 陈夏明 王海洋 强思维 Sun Ying Chen Xiaming Wang Haiyang Qiang Siwei(State Key Laboratory of Advanced Optical Communication Systems & Networks, School of Electronic Information & Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, Chin)
出处 《计算机应用研究》 CSCD 北大核心 2016年第12期3521-3526,3534,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(61371084)
关键词 人群分布 3G上网数据 动态聚散 时空分析 预测模型 population distribution 3G mobile phone data dynamic accumulation and dispersion spatio-temporal analysis forecast model
  • 相关文献

参考文献1

二级参考文献25

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献48

同被引文献38

引证文献3

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部