期刊文献+

基于用户多属性与兴趣的协同过滤算法 被引量:14

Collaborative filtering algorithm based on multiple attributes and interests of users
下载PDF
导出
摘要 传统的协同过滤算法广泛应用于推荐系统领域,但该算法仍存在用户冷启动和数据稀疏性问题,造成算法的推荐质量较差。对此,提出一种基于用户多属性与兴趣的协同过滤算法AICF(attributes and interests collaborative filtering)。首先通过对多种用户属性分配权重计算出用户多属性相似度。其次利用改进的Slope One算法填充用户—项目评分矩阵,然后计算基于隐性标签的用户兴趣相似度。最后基于两种相似度的组合进行推荐。实验结果表明,AICF算法不仅明显提高了推荐结果的准确性,同时也改善了用户冷启动和数据稀疏性问题。 The traditional collaborative filtering algorithms have been widely used in the field of recommender systems. How- ever, there is a decline in the quality of recommendation due to user cold start and data sparsity. Therefore, this paper proposed a collaborative filtering algorithm called AICF( attributes and interests collaborative filtering), which was based on multiple at- tributes and interests of user. Firstly, AICF assigned a variety of user attributes weights to calculate the user multi-attribute similarity. Secondly, AICF applied the improved Slope One algorithm fill user-item rating matrix, and then implicited tag similarity of user interest could be worked out. Finally, AICF combined these two similarities to get recommendation results. Experimental results show that the proposed algorithm not only highly improves the accuracy of the recommendation ,but also improves problems of user cold start and data sparsity.
作者 赵文涛 王春春 成亚飞 孟令军 赵好好 Zhao Wentao Wang Chunchun Cheng Yafei Meng Lingjun Zhao Haohao(College of Computer Science & Technology, Henan Polytechnic University, Jiaozuo Henan 454000, Chin)
出处 《计算机应用研究》 CSCD 北大核心 2016年第12期3630-3633,3653,共5页 Application Research of Computers
基金 河南省科技攻关资助项目(142402210435) 河南省高等学校矿山信息化重点学科开放基金资助项目(ky2012-02)
关键词 协同过滤 冷启动 数据稀疏性 用户多属性 隐性标签 collaborative filtering cold start data sparsity user muhi-attribute implicit tag
  • 相关文献

参考文献4

二级参考文献57

共引文献383

同被引文献105

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部