摘要
针对传统的动态核主成分分析(dynamic kernel principal component analysis,DKPCA)用于大样本数据集的故障检测时,占用计算机内存大、计算复杂度高等不足,提出一种基于特征子空间的DKPCA算法(EFS-DKPCA)。该方法通过构建具有较小维数特征子空间上的正交基来简化核矩阵K,从而降低DKPCA的计算复杂性。与DKPCA方法相比,该方法具有更高的计算效率,且只需较小的计算机存储空间。将该方法应用于TE(tennessee eastman)过程,仿真结果显示,两者诊断结果大致相同,而所需时间大大减小,说明了本算法的有效性。
For large sample data sets, traditional DKPCA occupancy a lot of computer memory and large computation, in order to solve these problems, this paper proposed an improved DKPCA based on effective feature subspace (EFS-DKPCA). The new method based on a orthonormal basis of the sub-space spanned by the training samples mapped onto the smaller feature space to simplify K, thereby reducing DKPCA computational complexity. When applied to process monitoring, the EFS-DKPCA-based method was more efficient in computation and needed less computer memory than DKPCA-based methods. Computer simulation of TE process demonstrates the effectiveness and efficiency of the proposed method.
作者
刘春燕
于春梅
闫广峰
Liu Chunyan Yu Chunmei Yan Guangfeng(School of Information Engineering, Southwest University of Science & Technology, Mianyang Sichuan 621010, China School of Surveying & Mapping Engineering, Southwest Jiaotong University, Chengdu 611756, China)
出处
《计算机应用研究》
CSCD
北大核心
2016年第12期3713-3716,共4页
Application Research of Computers
基金
特殊环境机器人技术四川省重点实验室开放基金资助项目(13zxtk06)
关键词
动态核主成分分析
特征空间
特征提取
故障检测
TE过程
dynamic kernel principal component analysis(DKPCA)
feature space
feature extractor
fault detection
tennessee eastman process