期刊文献+

基于朗斯基函数的混合高斯模型运动目标检测 被引量:3

New method for mixture Gaussian background model and moving object detection based on Wronskian function
下载PDF
导出
摘要 针对传统的混合高斯模型在进行运动目标检测时存在拖影和性能差的缺点,提出了一种融合朗斯基函数和帧间差分法的混合高斯背景建模算法。该改进算法通过朗斯基矩阵行列式判断相邻像素间空间域相关性,以此增加模型参数更新条件,改进模型参数更新机制;并利用帧间差分法检测运动目标轮廓的灵敏性,将两种检测结果布尔或运算,完善目标轮廓。实验结果表明,该改进算法对拖影现象达到很好的抑制作用,并使算法检测性能得到提高。 Considering the shortcomings, e. g. , trailing smear and lower performance, of the traditional GMM in the process of moving object detection, this paper proposed an improved Gaussian mixture model algorithm fusing Wronskian function and frames difference method. After the process of Gaussian mixture model,it judged the spatial domain correlation between neighboring pixels by the value of the Wronskian matrix determinant which increased the update condition of the model parameters and improved the updating mechanism of the model parameters. Finally, using the sensitivity of frames difference method to detect moving target contour,it applied Boolean OR operation on the results of improved GMM and frames difference method to get the preferable moving object. The experimental results show that the improved algorithm can effectively suppress the phenomenon of the trailing smear and enhance the detection performance.
作者 王宝珠 胡洋 郭志涛 刘翠响 Wang Baozhu Hu Yang Guo Zhitao Liu Cuixiang(School of Electronic & Information Engineering, Hebei University of Technology, Tianjin 300401, China)
出处 《计算机应用研究》 CSCD 北大核心 2016年第12期3880-3883,共4页 Application Research of Computers
基金 河北省高等学校科学技术研究青年基金资助项目(Q2012012)
关键词 混合高斯模型 运动目标检测 朗斯基函数 帧间差分法 Gaussian mixture model(GMM) moving object detection Wronskian function frames difference method
  • 相关文献

参考文献4

二级参考文献37

  • 1Collins R T,Lipton A J,Kanade T.A system for video surveillance and monitoring[R].VSAM final report,Technical CMU-RI-TR-00-12.Pittsburgh:Robotics Institute,Carnegie Mellon University,2000:1-68.
  • 2Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,CO,USA,June 23-25,1999:23-25.
  • 3Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by codebook construction[C] //International Conferrence on Image Processing,Singapore,Oct 24-27,2004,5:3061-3064.
  • 4Mohamad Hoseyn Sigari,Mahmood Fathy.Real-time Background Modeling/Subtraction using Two-Layer Codebook Model[C] //Proceedings of International Multiconference of Engineers and Computer Scientists,HongKong,China,March 19-21,2008,1:10-21.
  • 5Elgammal A,Harwood D,Davis L.Non-parametric Model for Background Subtraction[C] //European Conference of Computer Vision,Dublin,April 18,2000,1843:751-767.
  • 6Mittal A,Paragios N.Motion-Based Background Bubtraction using Adaptive Kernel Densify Estimation[C] //The IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington,June 27-July 2,2004,2:302-309.
  • 7Li L Y,Huang W M,Irene Y H,et al.Foreground Object Detection from Videos Containing Complex Background[C] //The eleventh ACM international conference on multimedia,Berkeley,CA,USA,2003:2-10.
  • 8Li Y L,Huang W M,Irene Y H,et al.Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J].IEEE Transactions on image processing(S1057-7149),2004,13(11):1459-1472.
  • 9Heikkila M,Pietikainen M.A Texture-Based Method for Modeling the Background and Detecting Moving Objects[J].IEEE Transactious on Pattern Analysis and Machine Intelligence(S0162-8828),2006,28(4):657-662.
  • 10Javed O,Shah M.Tracking and Object Classification for Automated Surveillance[C] //European Conference on Computer Vision,Copenhagen,2002:343-357.

共引文献24

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部