摘要
本文考虑源自半导体材料科学中的非等熵可压缩Euler-Poisson系统.借助时空混合导数迭代方法和对称子技巧,研究了三维空间环上的周期问题;在初值为一个非常数平衡态的小摄动前提下,证明了当时间趋于无穷大时,该问题的整体光滑解按指数速率衰减至平衡态.这种粒子输运现象反映了等熵与非等熵系统的本质联系.
This work is concerned with the non-isentropic EuleroPoisson system in semiconductors. We investigate, by means of the techniques of symmetrizer and an induction argument on the order of the mixed time-space derivatives of solutions in energy estimates, the periodic problem in a three-dimensional torus. Under the assumption that the initial data is close to a non-constant steady state solutions, we prove that the smooth solutions of this problem converge to a steady state with exponential decay rates as the time goes to the infinity. This phenomenon on the charge transport shows the essential relation between the isentropic and the non-isentropic compressible Euler-Poisson system.
作者
冯跃红
王术
FENG YueHong WANG Shu
出处
《中国科学:数学》
CSCD
北大核心
2016年第11期1675-1690,共16页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371042)
北京市自然科学基金(批准号:1132006)
中国博士后基金资助项目