摘要
研究波动率服从快速均值回复Ornstein-Unlenbeck(O-U)过程的永久美式障碍期权的定价问题.考虑永久美式向下敲出看涨期权,该期权的定价问题可归结于求解自由边界问题.使用扰动法,把期权价格以及最优执行价格按均值回复时间长度的幂进行展开,通过求解Poisson方程组,得到期权和最优执行价格的渐近公式.
This study considers a stochastic volatility model for pricing perpetual American harrier options where the volatility is driven by a fast mean reversion Ornstein-Unlenheck (O-U) process.It takes the case of the perpetual down-and-out call option for example, pricing problem of which can be formulated as a free boundary problem.Using the perturbation method, we first expand the price and the optimal exercise price of this option in the power of the length of mean reversion time.Then,by solving a set of Poisson equations, two asymptotic formulae are derived for this option price and the optimal exercise price, respectively.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第6期912-917,共6页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(11401556
11471304)
中央高校基本科研业务费专项(WK 2040000012)
关键词
随机波动率
永久美式障碍期权
偏微分方程
扰动法
POISSON方程
stochastic volatility
perpetual American barrier options
partial differential equation
perturbation method
Poisson equation