期刊文献+

基于MHITD与MFE的往复压缩机故障特征提取方法

A Fault Feature Extraction Method Based on MHITD and MFE for Reciprocating Compressor
下载PDF
导出
摘要 针对往复压缩机振动信号的非平稳和非线性特性,提出一种基于改进ITD(MHITD)方法与多尺度模糊熵(MFE)的往复压缩机轴承故障特征提取方法。MHITD方法解决了ITD方法分量波形失真的问题,其采用单调三次Hermite插值代替了ITD方法中的线性变换。利用MHITD方法将故障振动信号分解为一系列旋转分量之和,根据相关性系数筛选包含故障主要信息的分量。利用多尺度模糊熵对各分量进行定量描述,并以类间平均欧氏距离对尺度因子进行优选,得出可分性良好的特征向量。通过该方法提取往复压缩机故障轴承间隙故障的特征向量,与ITD和样本熵方法进行对比分析,验证了该方法的有效性。 Aiming at the non-stationary and nonlinearity characteristics of reciprocating compressor vibration signal, a feature extraction method for bearing fault of reciprocating compressor based on Monotone Hermite interpolation Intrinsic time-scale decomposition (MHITD)and Muhiscale fuzzy entropy (MFE)is proposed. MHITD method used monotone hermite interpolation to replace linear transformation of the ITD method, which solved the problem of the component waveform distortion. Vibration signals in each state are decomposed into a series of PR components with MHITD method, and the PR components which contain the main information of fault state are chosen according to relative coefficient. MFE of the selected PR components was calculated, and the optimized scale factor was selected based on the maximum of average distances between different states, so the eigenvectors which have the best divisibility were extracted. Bearing clearance faults of reciprocating compressor were diagnosed by this method accurately and the superiority of this method is verified by comparing the eigenvectors extracted by ITD and sample entropy method.
作者 郭岱宗 杨明 李玉倩 吕妍 GUO Dai-zongl YANG Ming LI Yu-qian LYU Yan(School of Mechanical Science & Engineering, Northeast Petroleum University, Daqing 163318, China Daqing Petrochemical Company, Daqing 163318, China)
出处 《压缩机技术》 2016年第5期16-20,共5页 Compressor Technology
关键词 ITD Hemite插值 MFE 往复压缩机 特征提取 ITD Hermite interpolation MFE reciprocating compressor feature extraction
  • 相关文献

参考文献2

二级参考文献18

  • 1赵海洋,徐敏强,王金东.基于多重分形与奇异值分解的往复压缩机故障特征提取方法研究[J].振动与冲击,2013,32(23):105-109. 被引量:13
  • 2徐美芳,韩焱,董剑龙.数字射线图像降噪中的非线性滤波方法[J].无损检测,2005,27(5):259-263. 被引量:1
  • 3McFadden PD. Window functions for calculating of the time domain averages of the vibration of the individual planet gears and sun gear in an epicyclical gearbox [J]. Journal of Vibration and Acoustics,1994,116(1):179-187.
  • 4Alberto R ;Maria M. A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery. Mechanical Systems and Signal Processing. 2005,19:939–954.
  • 5John Argyris. The Influence of Noise on the Correlation Dimension of Chaotic Attractors [J]. Chaos Solitions & Fractals , 1998,9(3):343-361.
  • 6Huang N E, Shen Z and Long S R. A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 1999, 31: 417-457.
  • 7Jonathan S. Smith. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
  • 8Yaguo Lei, Zhengjia He, Yanyang Zi. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing. 2009, 23: 1327-1338.
  • 9Mark G. Frei, Ivan Osorio. Intrinsic time-scale decomposition: time-freqeucny-energy analysis and real-time filtering of non-stationary signals. Proceedings of the Royal Society. A, 2007, 463: 321-342.
  • 10Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time Series Analysis[J]. Proc. Roy. Soc. London,1998,454:903-995.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部