期刊文献+

Simulation by CMIP5 Models of the Atlantic Multidecadal Oscillation and Its Climate Impacts 被引量:3

Simulation by CMIP5 Models of the Atlantic Multidecadal Oscillation and Its Climate Impacts
下载PDF
导出
摘要 This study focuses on the climatic impacts of the Atlantic Multidecadal Oscillation (AMO) as a mode of internal vari- ability. Given the difficulties involved in excluding the effects of external forcing from internal variation, i.e., owing to the short record length of instrumental observations and historical simulations, we assess and compare the AMO and its related climatic impacts both in observations and in the "Pre-industrial" experiments of models participating in CMIP5. First, we evaluate the skill of the 25 CMIP5 models' "Historical" simulations in simulating the observational AMO, and find there is generally a considerable range of skill among them in this regard. Six of the models with higher skill relative to the other models are selected to investigate the AMO-related climate impacts, and it is found that their "Pre-industrial" simulations capture the essential features of the AMO. A positive AMO favors warmer surface temperature around the North Atlantic, and the Atlantic ITCZ shifts northward leading to more rainfall in the Sahel and less rainfall in Brazil. Furthermore, the results confirm the existence of a teleconnection between the AMO and East Asian surface temperature, as well as the late withdrawal of the Indian summer monsoon, during positive AMO phases. These connections could be mainly caused by internal climate variability. Opposite patterns are true for the negative phase of the AMO. This study focuses on the climatic impacts of the Atlantic Multidecadal Oscillation (AMO) as a mode of internal vari- ability. Given the difficulties involved in excluding the effects of external forcing from internal variation, i.e., owing to the short record length of instrumental observations and historical simulations, we assess and compare the AMO and its related climatic impacts both in observations and in the "Pre-industrial" experiments of models participating in CMIP5. First, we evaluate the skill of the 25 CMIP5 models' "Historical" simulations in simulating the observational AMO, and find there is generally a considerable range of skill among them in this regard. Six of the models with higher skill relative to the other models are selected to investigate the AMO-related climate impacts, and it is found that their "Pre-industrial" simulations capture the essential features of the AMO. A positive AMO favors warmer surface temperature around the North Atlantic, and the Atlantic ITCZ shifts northward leading to more rainfall in the Sahel and less rainfall in Brazil. Furthermore, the results confirm the existence of a teleconnection between the AMO and East Asian surface temperature, as well as the late withdrawal of the Indian summer monsoon, during positive AMO phases. These connections could be mainly caused by internal climate variability. Opposite patterns are true for the negative phase of the AMO.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1329-1342,共14页 大气科学进展(英文版)
基金 jointly supported by the National Natural Science Foundation of China(Grant No.41421004) the National Key Basic Research Development Program of China(Grant No.2016YFA0601802 and 2015CB453202) the National Natural Science Foundation of China(Grant Nos.41375085)
关键词 Atlantic Multidecadal Oscillation CMIP5 internal climate variability climate impacts Atlantic Multidecadal Oscillation, CMIP5, internal climate variability, climate impacts
  • 相关文献

同被引文献43

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部