期刊文献+

一种采用相位补偿的线谱相干检测器

A coherent tonal detector using phase compensation
下载PDF
导出
摘要 分析了加窗和实信号情况下相干线谱检测器的检测性能。从频谱泄漏现象出发,通过对实信号做加窗处理,有效地降低了信号傅里叶变换后频谱泄漏的旁瓣级,提升了弱信号的探测能力;针对分段处理时同一频率不同数据段出现的相位差,采用相位补偿的方法,实现了各段数据的相干叠加。理论分析和计算机仿真表明,相比于平均功率谱检测器(Average Power Processor,AVGPR),加窗相位补偿检测器(Window Phase-Compensated Processor,WPCPR)有10 lg L(L为分段数)信噪比的提高,从而拓宽了相干线谱检测的适用范围。此外,还从频域波束形成的角度,给出了WPCPR能提高信噪比的一种物理解释,并指出了仿真中信噪比增益与理论值存在差异的原因。 This paper analyzes the detection performance of the coherent line-spectrum detector when the input data is real and windowed. Starting with spectral leakage, the method proposed in this paper effectively reduces the sidelobe level of leakage and hence improves the detection performance of weak real signals through windowing. Phase difference between segments of data at the same frequency is correspondingly compensated, which results in the coherent integration of data. Considering the situation of windowing and real-data, theoretical analysis and simulation show that the Window Phase-Compensated Processor (WPCPR) of this paper can gain 10 lg L (L is the number of segments) more signal-to-noise ratio (SNR) when compared with the Average Power Processor (AVGPR), thus widening the scope of coherent line-spectrum detection. Furthermore, this paper gives a physical interpretation of the new method from the perspective of frequency domain beamforming and points out the reason why the SNR improvement is not good as predicted.
出处 《声学技术》 CSCD 北大核心 2016年第5期458-462,共5页 Technical Acoustics
关键词 频谱泄漏 平均功率谱检测器 加窗相位补偿检测器 信噪比增益 spectrum leakage Average Power Processor (AVGPR) Window Phase-Compensated Processor (WPCPR) Signal Noise Ratio (SNR) gain
  • 相关文献

参考文献2

二级参考文献48

  • 1吴国清.线谱非平稳性分析和利用干涉谱测距[J].声学学报,2004,29(4):363-368. 被引量:20
  • 2郑援,胡成军,李启虎,孙长瑜.一种多目标方位历程实时提取方法[J].声学学报,2005,30(1):83-88. 被引量:13
  • 3胡桥,郝保安,吕林夏等.经验模式能量熵在水声目标检测中的应用[J]. 声学技术.2007,26(5):181-183.
  • 4Ide J M. Development of underwater acoustic arrays for passive detection of sound sources[C]// Proceedings of the IRE, 1959, 47(5): 864-866.
  • 5Lampert T A, Pears N E, O'Keefe S E M. A multi-scale piece- wise-linear feature detector for spectrogram tracks[C]//Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS '09., 2009: 330-335.
  • 6Mellinger D K. Handling time variability in bioacoustic transient detection[C]//OCEANS '93 Proceedings, 1993(3): 116-121.
  • 7MeUinger D K, Clark C W. A method for filtering bioaconstic transients by spectrogram image convolution[C]/ OCEANS '93 Proceedings, 1993(3): 122-127.
  • 8Ravier P, Amblard P O. A transient detector based on Malvar wavelets[C]//OCEANS '96 Proceedings, 1996(2): 914-918.
  • 9Leung T S T, White P R. A fuzzy logic based underwater acoustic transient classifier[C]// 1996 IEEE Digital Signal Processing Workshop Proceedings, 1996: 494-497.
  • 10Marple L, Brotherton T. Detection and classification of short duration underwater acoustic signals by Prony's method[C]//1991 International Conference on Acoustics, Speech, and Signal Processing, 1991(2): 1309-1312.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部