期刊文献+

浅谈反证法的可操作性——基于康托尔对角线法、哥德尔不完全性定理、图灵停机问题及EPR悖论 被引量:1

Introduction to the operability of reduction to absurdity ——based on cantor diagonal method, Godel's incompleteness theorem, Turing downtime problems and EPR paradox
下载PDF
导出
摘要 一直以来,康托尔对角线法总是与反证法密不可分,然而反证法并不如通常看得那样简单。文章从操作主义的观点,针对反证法提出了几点可操作性的要求,然后分析了几个著名的反证法论证,发现都不同程度地存在一些问题。由于不恰当的隐性假设,康托尔关于实数集不可数的证明是无效的。哥德尔为证明不完全性定理而引入的一个定理违反了矛盾律,并且他关于"可证"与"真"的区分实际上是陷入了循环论证。图灵停机问题其实是比较晚近的提法,与图灵的原始论文有较大差别,而且有些证明思路可能还或多或少地误解了图灵。最后,通过分析爱因斯坦的EPR悖论,进一步强调了假设唯一以及事实认定,对于反证法的重要性。 For a long time, cantor diagonal method and reduction to absurdity is inseparable, however, reduction to absurdity is not as simple as we usually think. According to the operating point of view, this paper puts forward some operational requirements in view of the reduction to absurdity. Then analyzed the text of several famous argument, found that there are some problems in varying degrees. Due to improper implicit assumptions, it is invalid that cantor prove real number set is uncountable. To prove incompleteness theorem, an important theorem of Godel introduced is a violation of the law of contradiction, and his excuse is a circular argument. Turing halting problem is relatively recent, but some of the popular view may be more or less misunderstood Turing. Finally, through the analysis of Einstein EPR paradox, further emphasized in reduction, assuming that the only recognized the importance of with the fact, for the reduction to absurdity, Einstein EPR paradox shows that the only assumption is very important.
作者 黄汝广
出处 《大众科技》 2016年第9期94-97,共4页 Popular Science & Technology
关键词 反证法 可操作性 隐性假设 事实 康托尔对角线 哥德尔不完全性定理 图灵停机问题 EPR悖论 the reduction to absurdity operability implicit assumptions facts Cantor diagonal Godel's incompleteness theorem Turing downtime issues EPR paradox
  • 相关文献

参考文献2

二级参考文献14

  • 1黄政新.EPR问题:进展与机遇[J].南京航空航天大学学报(社会科学版),2002,4(4):16-19. 被引量:2
  • 2王素新.由EPR佯谬说起——浅谈量子力学解释[J].承德民族师专学报,2003,23(2):58-59. 被引量:1
  • 3Kurt Godel, "On formally undecidable propositions of Principia mathematica and related systems", in Jean van Heijenoort (eds.), From Frege to C,6del, Cambridge, Massachusetts: Harvard University Press, 1967, pp. 596 - 616.
  • 4汉密尔顿.《数学家的逻辑》,骆如枫译,北京:商务印书馆,1989年,第164-192页.
  • 5Ludwig Wittgenstein, Remarks on the Foundations of Mathematics (Third Edition), edited by G. H. von Wright and R. Rhees., translated by G. E. M. Anscombe, Oxford; Blackwell, 1978, Ⅰ Appendix Ⅲ.
  • 6Floyd Juliet and Hilary Putnam, "A Note on Wittgenstein s 'Notorious Paragraph' about the Godel theorem", The Journal of Philosophy, vol. 97(2000), pp: 624-632.
  • 7Timothy Bays, "On Floyd and Putnam on Wittgenstein on Godel", The Journal of Philosophy, vol, 101 (2004), pp, 197 - 210
  • 8贝纳塞拉夫,普特南编.《数学哲学》,朱水林等译,北京:商务印书馆,2003年,第104、98页.
  • 9维特根斯坦.《维特根斯坦全集》(第7卷),第75、223、82、86页.
  • 10Analytical Philosophy, ed. R.J.Butler(first series), Blaekwell, 1962, p104- 119.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部