期刊文献+

Frame-invariance in finite element formulations of geometrically exact rods 被引量:1

Frame-invariance in finite element formulations of geometrically exact rods
下载PDF
导出
摘要 This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm. This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1669-1688,共20页 应用数学和力学(英文版)
关键词 geometrically exact rod finite element method interpolation EQUIVARIANCE frame invariance geometrically exact rod finite element method interpolation equivariance frame invariance
  • 相关文献

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部