期刊文献+

Strong-form framework for solving boundary value problems with geometric nonlinearity

Strong-form framework for solving boundary value problems with geometric nonlinearity
下载PDF
导出
摘要 In this paper, we present a strong-form framework for solving the boundary value problems with geometric nonlinearity, in which an incremental theory is developed for the problem based on the Newton-Raphson scheme. Conventionally, the finite ele- ment methods (FEMs) or weak-form based meshfree methods have often been adopted to solve geometric nonlinear problems. However, issues, such as the mesh dependency, the numerical integration, and the boundary imposition, make these approaches com- putationally inefficient. Recently, strong-form collocation methods have been called on to solve the boundary value problems. The feasibility of the collocation method with the nodal discretization such as the radial basis collocation method (RBCM) motivates the present study. Due to the limited application to the nonlinear analysis in a strong form, we formulate the equation of equilibrium, along with the boundary conditions, in an incremental-iterative sense using the RBCM. The efficacy of the proposed framework is numerically demonstrated with the solution of two benchmark problems involving the geometric nonlinearity. Compared with the conventional weak-form formulation, the pro- posed framework is advantageous as no quadrature rule is needed in constructing the governing equation, and no mesh limitation exists with the deformed geometry in the increment al-it erative process. In this paper, we present a strong-form framework for solving the boundary value problems with geometric nonlinearity, in which an incremental theory is developed for the problem based on the Newton-Raphson scheme. Conventionally, the finite ele- ment methods (FEMs) or weak-form based meshfree methods have often been adopted to solve geometric nonlinear problems. However, issues, such as the mesh dependency, the numerical integration, and the boundary imposition, make these approaches com- putationally inefficient. Recently, strong-form collocation methods have been called on to solve the boundary value problems. The feasibility of the collocation method with the nodal discretization such as the radial basis collocation method (RBCM) motivates the present study. Due to the limited application to the nonlinear analysis in a strong form, we formulate the equation of equilibrium, along with the boundary conditions, in an incremental-iterative sense using the RBCM. The efficacy of the proposed framework is numerically demonstrated with the solution of two benchmark problems involving the geometric nonlinearity. Compared with the conventional weak-form formulation, the pro- posed framework is advantageous as no quadrature rule is needed in constructing the governing equation, and no mesh limitation exists with the deformed geometry in the increment al-it erative process.
作者 J.P.YANG W.T.SU
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1707-1720,共14页 应用数学和力学(英文版)
基金 Project supported by the Ministry of Science and Technology of Taiwan(No.MOST 104-2221-E-009-193)
关键词 geometric nonlinearity incremental-iterative algorithm radial basis collo-cation method (RBCM) strong form geometric nonlinearity incremental-iterative algorithm radial basis collo-cation method (RBCM) strong form
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部