摘要
设G是一个对称平面图.Ciucu等证明了一个有关G的生成树数目的拆分定理,也就是G的生成树数目可用两个小图的生成树数目乘积来表示.在此基础上,提出了一种图变换,给出了图在这种变换下生成树数目的变化关系式,再结合矩阵-树定理给出了该拆分定理的一个简短证明.同时,受Zhang等证明的赋权图生成树权和的拆分定理启发,还给出了一个关于对称无权图生成树数目的等价拆分公式.
Let G be a plane graph with reflective symmetry.Ciucu,et al,proved a factorization theorem on the number of spanning trees of G.That is,the number of spanning treesof G can be expressed in terms of the product of the number of spanning trees of two smaller graphs.In this paper,we introduce a graph transformation and discuss its effect on the number of spanning trees,then by the matrix-tree theorem we give a short proof of above-mentioned factorization theorem.Motivated by a factorization theorem on the sum of weights of spanning trees of weighted graphs with some symmetry in Zhang et al,we further provide an equivalent factorization formula on the number of spanning trees of unweighted graphs with some symmetry.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第4期554-557,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(11271307
11561058)
广西高校数学与统计模型重点实验室开放课题
关键词
生成树数目
矩阵-树定理
对称性
平面图
spanning trees number
matrix-tree theorem
symmetry
plane graph