摘要
结合多种算法对无标记手势动作的识别进行了研究。根据人体肤色分布特性,采用了高斯肤色模型对肤色进行了建模;针对外界光照问题,采用HSV颜色空间来表示不同的肤色;针对手部运动过程中会出现背景信息融入手部的情况,使用背景去除的Haar-like特征手部描述算法,同时研究了Ada Boost分类器进行特征分类。实验结果表明:在无标记手部分割中,采用多特征融合的方法较可以得到更好的分割效果。
Identification of non-mark gesture movement was studied by multi-algorithms. Gaussian skin model was used to model human complexion accoding to human comlexion distribution properties. HSV color space was applied to represent different skin colors. For in hand movement process, background information was incorporated in hand, algorithm of Haar- like which described hand characters by removing background was applied. Meanwhile AdaBoost classifier was explored to classify characters. The results of experiment show that in non-mark hand segmenting, muhi-feature combination method can achieve better segment results.
出处
《重庆交通大学学报(自然科学版)》
CAS
北大核心
2016年第5期185-192,共8页
Journal of Chongqing Jiaotong University(Natural Science)
基金
重庆市高等教育教学改革研究项目(1203034)
重庆市教委科学技术研究项目(KJ1400305)
重庆交通大学山区桥梁与隧道工程国家重点实验室开放基金资助项目(CQSLBF-Y16-7)
水利水运工程教育部重点实验室开放基金(SLK2016A01)
关键词
通信工程
机器视觉
手势识别
手部标记
混合特征
communication engineering
machine vision
gesture recognition
hand segment
muhi-feautre fusion