期刊文献+

改进重采样的高斯粒子滤波定位技术 被引量:2

Wireless Location for Gaussian Particle Filter of Improved Re-Sampling
下载PDF
导出
摘要 针对粒子滤波算法中仍然存在的样本匮乏现象,在高斯滤波的基础上,提出了一种改进重采样的高斯粒子滤波(IR-GHPF)算法。经过新的重采样后的粒子包含了更多相邻粒子的状态信息,提高了粒子的多样性。将此算法应用于无线定位系统中,仿真结果表明,该算法在NLOS环境下仍然具有较高的估计精度,其定位性能优于粒子滤波算法和高斯粒子滤波算法。 In order to reduce the phenomenon of sample impoverishment in particle filter,an improved re-sampling of Gaussian particle filter(IR-GHPF) algorithm is proposed based on the Gaussian filtering.The particles after new resampled,contain more state information of adjacent particles and enhance the diversity of particles.The algorithm is applied to the wireless positioning system,the simulation results show that IR-GHPF has high estimation precision in the NLOS environment and the positioning performance is superior to particle filter algorithm and Gaussian particle filter algorithm.
出处 《测控技术》 CSCD 2016年第11期18-21,共4页 Measurement & Control Technology
基金 陕西省自然科学基金资助项目(2014JM2-6088)
关键词 粒子滤波 粒子多样性 重采样 无线定位 非视距误差 particle filter diversity of the particles re-sampling wireless location non line of sight
  • 相关文献

参考文献6

二级参考文献86

  • 1方正,佟国峰,徐心和.一种鲁棒高效的移动机器人定位方法[J].自动化学报,2007,33(1):48-53. 被引量:15
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 4叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 5Sanjeev A, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/nomGaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Dellaertt F, Fox D, Burgaxd W, Thrun S. Monte Carlo localization for mobile robots. In: Proceedings of IEEE Inter- national Conference on Robotics and Automation. Detroit, USA: IEEE, 1999. 1322-1328.
  • 7Thrun S, Fox D, Burgard W, Dellmert F. Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 2001, 128(1-2): 99-141.
  • 8Fox D. Adapting the sample size in particle filters through KLD-sampling. International Journal of Robotics Research, 2003, 22(12): 985-1103.
  • 9Lenser S, Veloso M. Sensor resetting localization for poorly modeled mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000. 1225-1232.
  • 10Ueda R, Arai T, Sakamoto K, Kikuchi T, Kamiya S. Expansion resetting for recovery from fatal error in Monte Carlo localization-comparison with sensor resetting methods. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE, 2004. 2481-2486.

共引文献320

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部