期刊文献+

海面风矢量对不同极化状态海表面亮温的遥感影响研究 被引量:2

The influence of sea surface wind vector on the sea surface brightness temperature remote sensing in different polarization
原文传递
导出
摘要 本文从海面风矢量与不同极化状态下海表面亮温参数的关系入手,利用2014年5月1日西北太平洋区域Windsat卫星L2风场数据和SMOS(Soil Moisture and Ocean Salinity)卫星L1C数据,定量分析了风速和风向对亮温的影响。研究结果表明:海表面亮温的变化,风速大于风向的影响;V极化状态下垂直亮温对风速、风向的敏感性最强,Stokes2亮温参数对风速的敏感性最低,20°风向变化对Stokes1亮温参数敏感性最低;海面亮温在3级风速内和0°~150°风向区间受风场影响变化较小,亮温波动显著区域主要集中在6级风速以上和300°~360°风向区间。 From the relationship between the surface wind vector and the sea surface brightness temperature parameters at difference polarizations,the influence of the windfield on the brightness temperature was quantitatively analyzed using the Windsat satellite L2 wind field data and the L1 C satellite SMOS data in the Northwest Pacific region of China on May 1,2014.The results indicate that the wind speed has greater influence on the sea surface brightness temperature than the wind direction; the sensitivity of wind field is the most conspicuous in the vertical brightness temperature,and the Stokes2 brightness temperature parameter has the lowest sensitivity to the wind speed,meanwhile the Stokes1 brightness temperature parameter has the lowest sensitivity to the wind direction under 20 degrees; the best correlation between sea surface brightness temperature and wind field is under 3 level wind speed and 0 ~ 150 degree wind direction; the significant brightness temperature fluctuation mainly happen over 6 level wind speed and 300 ~360 degree wind directions.
出处 《海洋环境科学》 CAS CSCD 北大核心 2016年第6期853-860,共8页 Marine Environmental Science
基金 电磁波信息科学教育部重点实验室开放基金(EMW201501)
关键词 SMOS Windsat 海面亮温 风矢量 极化 SMOS Windsat sea surface brightness wind vector polarization
  • 相关文献

参考文献3

二级参考文献44

  • 1史久新,朱大勇,赵进平,曹勇.海水盐度遥感反演精度的理论分析[J].高技术通讯,2004,14(7):101-105. 被引量:14
  • 2殷晓斌 ,刘玉光 ,张汉德 ,修鹏 .海表面盐度的微波遥感——平静海面的微波辐射机理研究[J].高技术通讯,2005,15(8):86-90. 被引量:11
  • 3刘璟怡,王振占,殷晓斌,姜景山.一种针对Windsat极化辐射计的海面风场反演方法[J].遥感技术与应用,2007,22(2):210-215. 被引量:5
  • 4Stogryn A. The apparent temperature of the sea at microwave frequencies. IEEE Trans Antennas Propag, 1967, AP-15:278-286
  • 5Wu S T, Fung A K. A noncoherent model for microwave emissions and backscattering from the sea surface. J Geophys Res, 1972, 77:5917-5929
  • 6Wents F J. A model function for ocean microwave brightness temperatures. J Geophys Res, 1983, 88:1892-1908
  • 7Johnson J T, Zhang M. Theoretical study of the small slope approximation for ocean polarimetrie thermal emission. IEEE Trans Geosei Remote Sensing, 1999, 37(5): 2305-2316
  • 8Irisov V G. Azimuthal variations of the microwave radiation from a slightly non-Gaussian sea surface. Radio Sci, 2000, 35(1): 65-82
  • 9Yueh S H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans Geosci Remote Sensing, 1997, 35(6): 1400-1418
  • 10Trokhimovski Y, Irisov V, Westwater E, et al. Microwave polarimetric measurements of the sea surface brightness temperature from a blimp during Coastal Ocean Probing Experiment (COPE). J Geophys Res, 2000, 105:6501-6516

共引文献22

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部