期刊文献+

基于迹比优化的正交子空间支持向量机

Orthogonal subspace support vector machine via trace ratio optimization
原文传递
导出
摘要 针对多平面支持向量机机器学习算法的分类性能受特征数量限制的问题,提出一种正交子空间支持向量机(orthogonal subspace support vector machine,OSSVM).首先为每类数据寻找一个正交子空间,使得该类数据和其他类数据在子空间中的投影存在较大间隔;然后基于迹比优化提出求解OSSVM模型的迭代算法,再利用核方法将OSSVM扩展为非线性模型.实验结果验证了本文算法在数据分类中具有良好的泛化性能. Multi-surface support vector machines have achieved great progress recently, however, the number of features limits their classification performance. In order to extract more features from data and improve the classification accuracy of multi-surface support vector machine, an orthogonal subspace support vector machine (OSSVM) is proposed. OSSVM seeks an orthogonal subspace for each class such that corresponding class has large margin from other classes after projection. An iterative algorithm is developed to solve OSSVM based on trace ratio optimization. OSSVM is also extended to do nonlinear classification with kernel method. Experimental results confirm that OSS- VM leads to good generalization performance in classification problems.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第3期49-53,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61502206) 江苏省自然科学基金资助项目(BK20150523) 江苏省教育厅自然科学研究资助项目(06KJD150045) 江苏省普通高校研究生科研创新计划项目(KYLX15_1078)
关键词 支持向量机 正交子空间 迹比优化 特征提取 support vector machine orthogonal subspace trace ratio optimization featureextraction
  • 相关文献

参考文献1

二级参考文献11

  • 1杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 2杨绪兵,陈松灿,杨益民.局部化的广义特征值最接近支持向量机[J].计算机学报,2007,30(8):1227-1234. 被引量:10
  • 3Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley, 1998.
  • 4Mangasarian O L, Wild E W. Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 1 ) : 69 - 74.
  • 5Lee Y J, Mangasarian O L. RSVM: Reduced Support Vector Machines// Proc of the 1 st SIAM International Conference on Data Mining. Chicago, USA, 2001 : 5 -7.
  • 6Richard D, Peter H. Pattern Classification and Scene Analysis. New York, USA: Wiley, 1973.
  • 7Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels// Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999 : 41 -48.
  • 8Muphy P M, Aha D W. UCI Repository of Machine Learning Databases [ DB/OL]. [ 2009-01-01 ]. http://archive. ics. uci. edu/ ml/.
  • 9Mitchell T M. Machine Learning. Boston, USA : McGraw-Hill, 1997.
  • 10Golub G H, Loan C F V. Matrix Computations. 3rd Edition. Baltimore, USA: John Hopkins University Press, 1996.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部