摘要
针对一类含有扰动的分数阶混沌系统的同步问题,考虑系统所受干扰界未知和非线性环节Lipschitz常数难以计算等情况,构建了一种鲁棒性较强的分数阶积分滑模面,并且基于分数阶Lyapunov稳定性理论设计了自适应滑模控制器和未知参数自适应律.数值仿真结果验证了该控制方法是有效的,能够实现分数阶混沌系统的渐近同步.
Aiming at chaos synchronization of a class of fractional-order chaotic systems with the dis- turbance, considering the situation of the unknown bound of disturbance and the value of the Lips- chitz constant of nonlinear link difficult to calculate exactly in the system, a fractional-order integral sliding surface with strong robustness is designed. The adaptive sliding mode controller and adap- tive laws of unknown parameters are designed based on the fractional Lyapunov stability theory. Numerical simulations are used to illustrate the effectiveness of the proposed control method, and the asymptotic synchronization can be realized between two fractional-order chaotic systems.
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2016年第3期54-57,78,共5页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(61374010)
关键词
分数阶混沌系统
同步
自适应滑模控制
fractional-order chaotic system
synchronization
adaptive sliding mode control