摘要
文章旨在结合实例,用主成分回归分析PM10等六种成分对大气污染的综合影响和各自的具体影响程度。首先用灰关联分析了这些污染成分的量对空气质量不达标天数的影响程度,其次用主成分分析法(PCA)推导出了表示各月污染程度的主成分,再次用回归模型拟合出了各成分量与不达标天数的方程,最后给出了结论和建议。创新点是主成分分析、灰关联分析、回归分析在分析大气污染成分方面的应用。特别强调之处为所得到的污染主成分以及不达标天数的拟合方程。
Purpose of the article is to analyze comprehensive influence degree of six factors( such as PM10) to air pollution and different influence degree of every factor with Principal Component and Regression Analysis Method in the light of practical example. At first,different kinds of influence degree of these factors to number of days when air quality is not up to standard are analyzed with grey relational analysis; secondly,principal component which shows degree of pollution of each month is induced with principal component analysis( PCA); Thirdly,fitting equation between every pollution factor and number of days when air quality is not up to standard is given with regression model; at last,conclusion and suggestion are given. Innovation is use of Principal component analysis,grey relational analysis,regression analysis in analyzing air pollution factors. Principal pollution component and fitting equation in the article should be attached more importance to.
出处
《忻州师范学院学报》
2016年第5期9-12,共4页
Journal of Xinzhou Teachers University
基金
山西工程技术学院校级科研项目(201606003)
关键词
主成分分析
灰关联分析
回归分析
污染成分
不达标天数
principal component analysis
grey relational analysis
regression analysis
pollution factor
number of days when air quality is not up to standard