期刊文献+

切向孔单/双排布局对离心式喷嘴锥形液膜雾化特性影响 被引量:5

Effects of Single-Row/Dual-Row Layout of Tangential Holes on Atomization Characteristics of Conical Sheets Emanating from Swirl Atomizer
下载PDF
导出
摘要 为了研究切向孔单/双排布局对离心式喷嘴雾化性能的影响,采用高速摄影仪对两种结构喷嘴形成的锥形液膜进行了拍摄分析,测量了不同压降下液膜的破碎长度、喷雾锥角、出口轴向速度以及表面波破碎点波长等雾化性能参数,并使用这些性能参数作为初始条件,求解了锥形液膜色散方程。结果表明:双排切向孔布局使得液膜雾化性能变差,体现为相同压降下喷雾锥角减小1°~2°,破碎长度增大,增大幅度最大达8.2%;色散方程求得的破碎点波长理论值与试验值吻合较好,验证了所用液膜破碎模型的有效性;单排切向孔喷嘴形成液膜的主导扰动波增长率大于双排切向孔喷嘴的主导波增长率,从直观上解释了单排切向孔喷嘴破碎长度小于双排切向孔喷嘴的原因。 In order to investigate the effects of single-row/dual-row layout of tangential holes on atomization performance of swirl atomizer,the high-speed camera has been used to visualize and analyze the conical sheets of these two kinds of injectors. The breakup length,spray angle,exit axial velocity and the wave length of breakup point under different pressure drop have been measured. Using these parameters as initial conditions,the dispersion equation of conical sheet has been solved. The results indicate that the dual-row layout of tangential hole worsens the atomization performance,decreasing the spray cone angle about 1°~2° and increasing the breakup length up to a 8.2% amplification. The theoretical surface wave of breakup point obtained by the dispersion equation accords well with that obtained by experiment,verifying the effectiveness of breakup model used in this paper. The dominant disturbance wave growth rate of injector with single-row tangential hole is greater than that of injector with dual-row tangential hole,which explains why the breakup length of injector with single-row tangential hole is shorter than that of injector with dual-row tangential hole,intuitively.
出处 《推进技术》 EI CAS CSCD 北大核心 2016年第11期2142-2149,共8页 Journal of Propulsion Technology
基金 国家自然科学基金(11472303 11402298) 新世纪优秀人才支持计划(NCET-13-0156)
关键词 切向孔 单/双排布局 锥形液膜 雾化 色散方程 Tangential holes Single-row/dual-row layout Conical sheets Atomization Dispersion equation
  • 相关文献

参考文献5

二级参考文献37

  • 1杨立军,张向阳,高芳,张振鹏.液体喷嘴动态特性数值模拟[J].航空动力学报,2004,19(6):866-872. 被引量:13
  • 2Kenny R J, I-lulka J R, Moser M D, et al. Effect of chamber backpressure on swirl injector fluid mechanics [ R ]. AIAA 2008-4846.
  • 3Hutt J J. A study of design details of rocket engine swirl injection elements[ D]. Indiana:Purdue Univ. , West Lafayette, 2007.
  • 4Bazarov V G, Yang V, Puneesh P. Design and dynamics of jet and swirl injectors. Liquid Rocket Thrust Cham- bers: Aspect of Modeling, Analysis, and Design [ M]. Reston : VA,2004.
  • 5Chinn J J. The analogy between swirl atomizer and weir flow : the principle of maximum flow[ R]. ICLASS, 2003.
  • 6FLUENT 6.3 user' s guide[ M]. Fluent Inc. , 2006.
  • 7Zong N, Yang V. Cryogenic fluid dynamics of pressure swirl injectors at supercritical conditions [ J]. Physics of Fluids, 2008,20(5) : 056103.
  • 8Kundu PK, Cohen IM. Fluid mechanics[M]. 3 ed: Academic Press, 2004.
  • 9Lighthill J. Wave patterns made by obstacles in a steady stream. In: Waves in Fluids [ M ]. Cambridge: Cambridge University Press, 2002.
  • 10[1]Squire H B.Investigation of the Instability of a Moving Liquid Film[J].Brit.J.Appl.Phys,1953,4:167-169.

共引文献30

同被引文献56

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部