期刊文献+

Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices 被引量:4

Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices
原文传递
导出
摘要 In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are exam- ined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation struc- ture is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is estab- lished. The I-V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I V characteristics of 180 nm commer- cial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are exam- ined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation struc- ture is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is estab- lished. The I-V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I V characteristics of 180 nm commer- cial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device.
出处 《Journal of Semiconductors》 EI CAS CSCD 2016年第12期45-50,共6页 半导体学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.11305126)
关键词 total ionizing dose (TID) bulk CMOS shallow trench isolation (STI) oxide trapped charge interfacetraps total ionizing dose (TID) bulk CMOS shallow trench isolation (STI) oxide trapped charge interfacetraps
  • 相关文献

同被引文献13

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部