期刊文献+

Singlet Oxygen Generation and Photoinduced Charge Separation of Tetra Polyethyleneglycol Functionalized Zinc Phthalocyanine-Fullerene Dyad

Singlet Oxygen Generation and Photoinduced Charge Separation of Tetra Polyethyleneglycol Functionalized Zinc Phthalocyanine-Fullerene Dyad
原文传递
导出
摘要 Utilization of polyethyleneglycol (PEG) functionalized zinc phthalocyanine, (PEG)4ZnPc in (i) singlet oxygen generation, and (ii) in building energy harvesting donor-acceptor systems using fullerene, C60 as an acceptor via the well-known metal-ligand axial coordination approach is reported. The (PEG)4ZnPe was found to be capable of producing singlet oxygen with a quantum yield, ooa of 0.77 in toluene, a value higher than that obtained for pristine (t-bu)4ZnPc (φ△=0.54) carrying no PEG groups, revealing its usefulness in photodynamic therapy applications. Spectroscopic studies revealed efficient binding of phenylimidazole functionalized fullerene, C60 Im with l : 1 stoichiometry to (PEG)4ZnPc. Binding constant K for the formation of (PEG)4ZnPc:ImC60 dyad was found to be 6 × 103 M 1 revealing moderate stability. Geometric and electronic studies of the dyad was arrived by B3LYP/3-21G(*) method. The HOMO level was found to be on zinc phthalocyanine entity while the LUMO level was found to be on the C60 entity suggesting formation of (PEG)4ZnPc*+:ImC60* charge separated state during the process of electron transfer reaction. Redox studies on the (PEG)4ZnPc:ImC60 dyad enabled accurate determination of the oxidation and reduction potentials of the donor-acceptor system, and to evaluate free-energy changes associated for the charge separation process. Kinetics of photoinduced charge separation and recombination in the (PEG)4ZnPc:ImC60 dyad was investigated using femtosecond transient absorption studies. Relatively long-lived charge separated states were confirmed for the dyad suggesting their potential usefulness in energy harvesting applications. Utilization of polyethyleneglycol (PEG) functionalized zinc phthalocyanine, (PEG)4ZnPc in (i) singlet oxygen generation, and (ii) in building energy harvesting donor-acceptor systems using fullerene, C60 as an acceptor via the well-known metal-ligand axial coordination approach is reported. The (PEG)4ZnPe was found to be capable of producing singlet oxygen with a quantum yield, ooa of 0.77 in toluene, a value higher than that obtained for pristine (t-bu)4ZnPc (φ△=0.54) carrying no PEG groups, revealing its usefulness in photodynamic therapy applications. Spectroscopic studies revealed efficient binding of phenylimidazole functionalized fullerene, C60 Im with l : 1 stoichiometry to (PEG)4ZnPc. Binding constant K for the formation of (PEG)4ZnPc:ImC60 dyad was found to be 6 × 103 M 1 revealing moderate stability. Geometric and electronic studies of the dyad was arrived by B3LYP/3-21G(*) method. The HOMO level was found to be on zinc phthalocyanine entity while the LUMO level was found to be on the C60 entity suggesting formation of (PEG)4ZnPc*+:ImC60* charge separated state during the process of electron transfer reaction. Redox studies on the (PEG)4ZnPc:ImC60 dyad enabled accurate determination of the oxidation and reduction potentials of the donor-acceptor system, and to evaluate free-energy changes associated for the charge separation process. Kinetics of photoinduced charge separation and recombination in the (PEG)4ZnPc:ImC60 dyad was investigated using femtosecond transient absorption studies. Relatively long-lived charge separated states were confirmed for the dyad suggesting their potential usefulness in energy harvesting applications.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2016年第10期969-974,共6页 中国化学(英文版)
基金 Support by the National Science Foundation (Grant No. 1401188) is acknowledged. The computational work was performed at the Holland Computing Centre of the University of Nebraska.
关键词 singlet oxygen photoinduced charge separation zinc phthalocyanine FULLERENE self-assembly singlet oxygen, photoinduced charge separation, zinc phthalocyanine, fullerene, self-assembly
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部