期刊文献+

基于STIRPAT模型的区域农业碳排放影响因素分析 被引量:17

Analysis on Influence Factors of Regional Agricultural Carbon Emissions Based on STIRPAT Model
下载PDF
导出
摘要 以白城市为例,利用农业碳排放计算模型,从农业物质投入、水稻种植、畜牧养殖3个方面入手,对白城市农业碳排放进行了计算,分析其时空变化特征,在此基础之上,基于STIRPAT模型探析区域农业碳排放的影响因素,并提出相应对策。结果表明:1999-2013年,白城市农业碳排放量的时序变化分为3个阶段:低速增长阶段→高速增长阶段→波动阶段,数量由1999年236.554 4万t增加到2013年的444.616 7万t;农业碳排放强度的时序变化总体呈现先升后降的状态,2008年出现最大值6.192 1 t/hm2;2013年,镇赉县总碳排放量最大,达到130.594 1万t;洮南市农业物质投入碳排放量最大,达到56.990 8万t;镇赉县的水稻种植、畜牧养殖碳排放量最大,分别达到69.320 2万t、17.491 1万t;人口数、可比价格人均GDP、农用机械总动力、农业产率比值、农村投资、城市化率和农民人均纯收入是白城市农业碳排放的主要影响因素,影响力指数分别为0.260 5、0.087 4、0.112 6、-0.076 6、0.035 3、0.208 3、0.112 8。为有效实现农业低碳发展,减小碳排放强度,控制碳排放量,白城市必须要在5个方面采取相应策略:(1)完善管理体制,优化政策环境;(2)发展农业低碳技术,调整农业发展结构;(3)发展绿色能源,整合农村能源利用结构;(4)严格保护耕地,优化土地利用格局;(5)统筹兼顾,倡导低碳理念,营造社会氛围。 For a case study of Baicheng City in Jilin, based on the calculation model of agricultural carbon emissions, this paper focused on the aspects of agricultural material inputs, rice cultivation and livestock breeding to calculate agricultural carbon emissions, and analyzed their features of temporal and spatial variation. The influence factors of agricultural carbon emissions were studied based on STIRPAT model, and the corresponding countermeasures were put forward. The results indicated that the temporal variation of agricultural carbon emissions in Baicheng City was divided into three phases: slow-growth phase → rapid-growth phase → fluctuation phase, showing a continuous growth, agricultural carbon emissions intensity first went up and then down, with the maximum 6.192 1 t/hm2 in 2008. In 2013, carbon emissions were 1 305 941 tons in Zhenlai County, spatially being the largest proportion. Carbon emissions from agricultural material inputs were569 908 tons in Taonan County, being the largest proportion. Carbon emissions from rice cultivation and livestock breeding in Zhenlai County were 693 202 tons and 174 911 tons, respectively, both being the largest proportion. Population, constant price GDP, total power of agricultural machinery, agricultural yield ratio, rural investment, urbanization and the rural net income per capita were the influence factors of agricultural carbon emissions, and their influence force indexes were 0.260 5,0.087 4, 0.112 6,-0.076 6, 0.035 3, 0.208 3 and 0.112 8, respectively. In order to effectively achieve low-carbon development of agriculture, control carbon emissions and reduce carbon emissions intensity, appropriate strategies should be taken in the following aspects, such as to perfect the management system and optimize the policy environment; to develop agricultural emissions reduction technology and adjust the structure of agricultural development; to develop green energy and integrate utilization structure of rural energy; to protect strictly the arable land and optimize land use pattern; to make overall plans and take all-round considerations, advocate low-carbon concept, and create a good social atmosphere.
出处 《环境科学与技术》 CAS CSCD 北大核心 2016年第10期190-197,共8页 Environmental Science & Technology
基金 国家自然科学基金(41431857) 吉林省教育厅科技研究项目(吉教科合字(2013)第391号) 吉林省科技发展计划项目(20120408)
关键词 农业碳排放 STIRPAT模型 影响因素 时空变化 碳减排 白城市 agricultural carbon emissions STIRPAT model influence factors temporal and spatial variation carbon emissions reduction Baicheng City
  • 相关文献

参考文献19

二级参考文献241

共引文献1437

同被引文献208

引证文献17

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部