期刊文献+

混合碳源发酵对纳豆芽孢杆菌生产甲萘醌-7的影响 被引量:3

Effects of mixed carbon sources fermentation on the production of menaquinone-7 by Bacillus natto
下载PDF
导出
摘要 为了提高纳豆芽孢杆菌发酵生产甲萘醌-7的能力,以葡萄糖和甘油作为碳源进行深入研究。结果表明,葡萄糖作为碳源时有利于维持营养体形态,甘油作为碳源时有利于甲萘醌-7合成。结合了2种碳源的优点,采用葡萄糖/甘油混合碳源发酵策略。当葡萄糖与甘油混合质量比例为75∶25时,芽孢形成率比以甘油为单一碳源时下降了61.71%,且发酵产甲萘醌-7水平比以葡萄糖和甘油为单一碳源分别提高了34.61%和23.87%。该方法弥补了菌体易形成休眠体芽孢和甲萘醌-7产量低等问题,在甲萘醌-7工业生产上具有重要价值。 In order to improve the production efficiency of menaquinone-7 by Bacillus natto, further research was conducted using glucose and glycerol as carbon sources. Results showed that glucose as carbon source was conducive to maintain vegetative bacteria, while glycerol as carbon source was beneficial for menaquinone-7 synthesis. Combined with the advantages of two kinds of carbon sources, the strategy of glucose/glycerol mixed carbon sources was adopted for fermentation. When the mixture ratio of glucose to glycerol was 75:25 (w/w) , the sporulation ratio was decreased by 61.71% compared to that of glycerol as a single carbon source, and menaquinone-7 yield was respectively in- creased 34.61% and 23.87% compared to the process using glucose or glycerol as single carbon source. This strategy overcame the problem of easy sporulation and low menaquinone-7 yield, which provides significant value on menaqui- none-7 industrial production.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2016年第11期35-39,共5页 Food and Fermentation Industries
基金 国家863计划(No.2014AA021701) 国家自然科学基金(21306085) 高等学校博士学科点专项科研基金(20133221120008)
关键词 甲萘醌-7 纳豆芽孢杆菌 混合碳源 芽孢形成率 menaquinone-7 Bacillus natto mixed carbon sources sporulation ratio
  • 相关文献

参考文献1

二级参考文献14

  • 1Jekoseh K, Kllck U. Glucose dependent transcriptional expression of the crel gene in Acremonium chrysogenum strais showing differ- ent levels of cephalosporin C production. Current Genetics,2000, 37(6) : 388-395.
  • 2Jekosch K, Kuck U. Loss of glucose repression in an Acremonium chrysogenum β-1actam producer strain and its restoration by multi- ple copies of the crel gene. Applied Microbiology and Biotechnol- ogy,2000,54(4) : 556-563.
  • 3Pan CH, Spetch SV, MeKillip E, et al. Methyl oleate-based fer- mentation medium for eephalosporin C production. Developments in Industrial Microbiology, 1982, 23: 315-324.
  • 4Brakhage AA, Sprote P,Al-Abdallah Q, et al. Regulation of pen- icillin biosynthesis in filamentous fungi. Advances in Biochemical Engineering and Biotechnolgy,2004,88 : 45 -90.
  • 5Kim JH, Lim JS, Seung W. The Improvement of Cephalosporin C Production by Fed-batch Culture of Cephalosporium acremonium M25 Using Rice Oil, Biotechnology and Bioprooess Engineering, 2004,9(6) : 459-464.
  • 6Shin HY, Lee JY,Choi HS,ct al. Production of Cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysoge- num M35. The Journal of Micrebiology,2011,49(5) : 753-758.
  • 7Basak S,Velayudhan A,Ladisch M R. Simulation of dianxic pro- duction of cephalosporin C by Cephalosporium acremonium: Lag model for fed-batch fermentation. Biotechnology Progress, 1995, 11(6) : 626-631.
  • 8Chu WBZ, Constantinides A. Modeling, optimization and com- puter control of the cephalosporin C fermentation process. Bio- technology and Bioengineering, 1988,32 (3): 277-288.
  • 9Brakhage AA. Molecular Regulation of β-Lactam Biosynthesis in Filamentous Fungi. Microbiology and Molecular Biology Reviews, 1998,62(3 ) : 547-585.
  • 10Chiang SJ. Strain improvement for fermentation and bioealtalysis processes by genetic engineering technology. Journal of Industrial Microbiology and Bioteehnology, 2004, 31 (3) : 99-108.

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部