期刊文献+

高墩三维日照温度场数值模拟及试验研究 被引量:11

Numerical Simulation and Test Analysis of Three-dimensional Solar Temperature Field of Hollow Tall-piers with Rounded Rectangular Cross Section
下载PDF
导出
摘要 研究目的:山区高速铁路圆端形空心高墩在日照作用下会存在温差,当截面温差及桥墩高度较大时,就会引起桥墩温度应力及墩顶位移,从而影响高速铁路运行的安全性及舒适性。为获取高墩三维日照温度场及温度变形规律,本文建立高墩三维温度场有限元模型,对高墩日照温度变化开展现场试验及模型验证,以68 m圆端形空心高墩为例,分析高墩径向、竖向温度场,以及高墩在日照作用下的变形和受力特征。研究结论:(1)高墩在日照作用下,径向温度沿壁厚方向变化符合负指数函数T_x=Ae^(-ax)+B变化规律,日照温度影响深度约为0.60 m;(2)桥墩表面竖向温度符合T_z=Ae^(-ax)+kz+B函数变化规律;(3)墩顶最大水平位移发生在18:00左右,因此可取18:00的温度场作为控制荷载,对桥墩结构的变形进行检算;(4)桥墩内、外壁均会受到拉应力的影响,在设计时应同时考虑内、外表面的配筋加强,以保证桥墩的抗裂和安全性;(5)该研究成果可为高速铁路圆端形空心高墩的设计和施工提供参考。 Research purposes: The hollow tall - piers with rounded rectangular cross section of high - speed railways have temperature gradient under the influence of solar radiation. When the temperature gradient and the height of pier exceed the limit, it will influence the safety and comfort of high - speed railways in operation because of the temperature stress and displacement at piers. To determine the changing law of the temperature field and deformations for tall - piers, the three - dimensional finite element model of tall - piers was constructed, and field test of tall - piers temperature field was completed. Taking 68 m tall - piers as an example, the characteristic of the temperature gradients in the longitudinal and transverse bridge directions and the deformation effect under the solar radiation was investigated. Research conclusions:( 1 ) The temperatures along the direction of wall thickness are in negative exponential Tx =Ae^-ax + B function distribution, the influence depth of temperature is about 0.60 m. (2) The temperatures on the vertical surface of the tall - piers accorded with Tz = Ae^-az + kz + B function distribution. (3) The maximum displacements of a tall - pier at the pier top result from the temperature gradients occur at 18:00. It is hopeful that the findings from this study provide the temperature field of 18:00 as the control loads to calculation the deformation of a bridge. (4) The internal and external surface of tall - piers exist tensile stress, it is hopeful to remind the designer of enhancing the rebar of tall- piers to ensure crack resistance and safety. (5)The research results can provide a reference for design and construction of tall - piers.
出处 《铁道工程学报》 EI 北大核心 2016年第11期57-62,共6页 Journal of Railway Engineering Society
基金 国家自然科学基金资助项目(51378503) 中国铁路总公司科技研究开发计划资助项目(2015G001-K)
关键词 高速铁路 空心高墩 温度梯度 温度变形 有限元分析 high - speed railway hollow tall - pier temperature gradient temperature deformation finite element analysis
  • 相关文献

参考文献4

二级参考文献29

  • 1张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006,39(9):39-42. 被引量:85
  • 2谢尚英.广州猎德大桥索塔日照温度效应分析[J].桥梁建设,2007,37(2):72-75. 被引量:18
  • 3刘兴法.混凝土桥梁的温度分布.铁道工程学报,1985,(1):107-111.
  • 4AASHTO. AASHTO Guide Specifications, Thermal Effects in Concrete Bridge Superstructures[S]. Washington D C: American Association of State Highway and Transportation Officals, 1989.
  • 5BRANCO F A, MENDES P A. Thermal Actions for Concrete Bridge Design [J].. Journal of Structural Engineering, 1993, 119(8): 2313-2331.
  • 6ROBERTS C L, BREEN J E, JASON C. Measurements of Thermal Gradients and Their Effects on Segmental Concrete Bridge[J]. Journal of Bridge Engineering, 2002, 7(3) : 166-174.
  • 7British Standard. BS EN 1990: 2002. Eurocode-Basis of Structural Design[S]. London: British Standards Institution, 2002,.
  • 8POTGIETER I C, GAMBLE W L. Response of Highway Bridges to Nonlinear Temperature Distributions[R]. Urbana: University of Illinois Engineering Experiment Station, 1983.
  • 9EMERSON M. Thermal Movements of Concrete Bridg- es: Field Measurements and Methods of Prediction[J]. ACI Publication PS, 1981, 70: 77-102.
  • 10CLARK J H. Evaluation of Thermal Stresses in a Concrete Box Girder Bridge[D]. Washington: Washington University, 1989.

共引文献38

同被引文献74

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部