期刊文献+

大部件喷涂中的移动机械臂站位规划 被引量:9

Base position planning of mobile manipulator for large parts painting
下载PDF
导出
摘要 由于机械臂的后三个关节具有极大的灵活度,且其运动对腕心的位置没有影响,因此以腕心为假想基座,采用D-H方法对机械臂进行重新建模,于是机械臂基座成为姿态固定的名义末端执行器。由名义末端执行器的可达位置的集合构成机械臂实际基座可行位置空间。在喷涂作业过程中,基座可行位置空间随腕心位置移动。通过对基座可行位置空间的交集进行分析,即可确定机械臂在实施区域喷涂作业时的可行站位区域。仿真试验结果表明:与固定规则站位生成方法相比,通过引入基座可行位置空间的概念能够快速确定机械臂站位的可选区域,扩大单次停站作业范围。 Considering that the last three wrist joints of a manipulator are highly dexterous and hove no influence on the position of the writ center point when moving, a mathematical model of the manipulator is reconstructed with origin at the wrist center point. Thus, the base of the manipulator becomes the nominal end effector with fixed orientation. All possible locations of the new end effector can be viewed as the Base's Workable Location Space (BWLS). The BWLS moves along with the wrist center point during the painting task. Through analysis of the intersection set of the BWLSs, the feasible base position area of the manipulator is established. Motion simulations on painting plane and curved surfaces referred to the concept of BWLS are performed. The results show the optional base position area of the manipulator can be quickly obtained and the once stop painting area is extended compared to the fixed rules.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1995-2002,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61403226) 摩擦学国家重点实验室项目(SKLT09A03)
关键词 机械制造自动化 站位规划 基座可行位置空间 可移动机械臂 喷涂机器人 移动平台 mechanical manufacturing and automation base position planning baser s workable location space mobile manipulator painting robot mobile platform
  • 相关文献

参考文献2

二级参考文献24

  • 1鹿应荣,杨印生,刘洪霞.基于BP神经网络的非线性组合预测模型在粮食物流需求预测中的应用[J].吉林大学学报(工学版),2008,38(S2):61-64. 被引量:15
  • 2张明.浅谈机器人喷涂的膜厚控制[J].现代涂料与涂装,2006,9(6):31-33. 被引量:8
  • 3张永贵,黄玉美,高峰,王伟.喷漆机器人空气喷枪的新模型[J].机械工程学报,2006,42(11):226-233. 被引量:51
  • 4Antonio J K. Optimal trajectory planning for spray coating [C] // Proceedings of IEEE International Conference on Robotics and Automation, Piscat- away, NJ, USA, IEEE, 1994:2570-2577.
  • 5Freund E, Rokossa D, Rossmann J. Process-orien- ted approach to an efficient off-line programming af industrial robots[C]//Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Piscataway, NJ, USA, IEEE, 1998: 208-213.
  • 6Suh S H, Woo I K, Noh S K. Development of an automatic trajectory planning system (ATPS) for spray painting robots[C]//Proceedings of IEEE In- ternational Conference on Robotics and Automation,Piscataway, NJ, USA, IEEE, 1991: 1948-1955.
  • 7Balkan T, Arikan M A S. Surface and process mod eling and off-line programming for robotic spray painting of curved surfaces[-J~. Journal of Robotic Systems, 2000, 17(9):479-494.
  • 8Balkan T, Arikan M A S. Modeling of paint flow rate flux for circular paint sprays by using experi- mental paint thickness distribution [J]. Mechanics Research Communications, 1999, 26(5): 609-617.
  • 9Conner D C, Greenfield A, Atkar P N, et al. Paint deposition modeling for trajectory planning on auto motive surfaces[C]//IEEE Transactions on Auto- mation Science and Engineering, 2005, 2 (4) : 381-391.
  • 10Pal Johan From, Jan Tommy Gravdahl. A Real-time algorithm for determining the optimal paint gun ori- entation in spray paint applications [C] // IEEE Transactions on Automation Science and Engineer ing, 2009.

共引文献17

同被引文献38

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部