摘要
设a∈R,如果对环R元素b,满足aR+bR=R,则存在幂等元e∈R,使得a+be有左逆,那么称元素a有幂等稳定度1(记为isr(a)=1).如果对于R中的所有元素a,都有isr(a)=1,那么称环R有幂等稳定度1(记为isr(R)=1).证明了若R是半完全环,G是初等阿贝尔p-群,则isr(RG)=1.另外,若isr(R)=1,G是局部有限p-群,且p∈J(G),则isr(RG)=1.
An element a in a ringR is said to have idempotent stable range 1 (written isr( a ) = 1) if aR +bR = R (for any b ∈ R ) implies there exists an idempotent e ∈ R , such that a+beis left invertible. If isr( a ) = 1 , for all a E R , then R, is called to have idempotent stable range 1 (written isr( R ) = 1 ). In this paper, we showed that i{ R was semiperfect and G was an elementary abelian p -group, then isr( RG ) = 1. It was shown that if isr( R ) = 1 and p ∈ J (G) and G was a locally finite p -group, then isr( RG ) = 1.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2016年第6期19-23,共5页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金青年科学基金资助项目(11301071)
江苏省青年基金资助项目(BK20160771)
南京工程学院引进人才科研启动基金资助项目(YJK201340)
关键词
幂等稳定度1
群环
P-群
dempotent stable range 1
group ring
p-group.