期刊文献+

双随机复合泊松损失下巨灾债券定价与数值模拟 被引量:6

Pricing Catastrophe Bonds under the Doubly Stochastic Compound Poisson Losses and Numerical Simulation
原文传递
导出
摘要 上世纪90年代出现的巨灾债券是以规避巨灾财产损失为目的的新型非传统风险转移金融创新工具之一,在我国有良好的发展前景。本文针对巨灾风险事件呈现出周期性与不规则的上升特征,构建了BDT过程用以刻画巨灾风险的抵达过程,并基于风险中性测度技术,在随机利率环境与双随机复合泊松损失条件下,导出了巨灾债券定价公式。进而结合伦敦同业银行拆借利率数据与美国保险服务所提供的PCS损失指数估计并校正了模型参数。最后,通过数值模拟检验了利率风险与巨灾风险如何影响巨灾债券的价格,同时验证了定价模型的可行性。 Due to an increasing risk of extreme losses caused by value concentration and climate change as well as due to a limited(and volatile)capacity of traditional reinsurance and retrocession markets.Against this background,Alternative risk transfer(ART)intends to provide additional(re)insurance coverage by transferring insurance risks to the capital market,which offers considerably higher capacities and can thus help satisfying the demand.catastrophe risk bonds are by far the most successful and importantART financial innovation,hence have large potential in China.Intergovernmental Panel on Climate Change(IPCC)(2013)projections of more frequent and more intense extreme weather events in the 21 st century and the occurrence and severity of abnormal climate change presents an irregular cycle with an upward trend.To capture the two catastrophic characteristics,a doubly stochastic Poisson process with Black DermanToy(BDT)intensity is proposed to model the arrival process for catastrophic risk events.The empirical results reveal the BDT arrival rate process is superior to the mean-reverting arrival process due to its larger E and d,and smaller RMSE,MAE and U.Second,to depict extreme features of catastrophic risks,the Block Maxima Method(BMM)in extreme value theory(EVT)is adopted to characterize the tail characteristics of catastrophic risk loss distribution.And then the loss distribution is analyzed and assessed using the graphics technology,the goodness-of-fit test,and model evaluation,it is found that the Generalized Extreme Value(GEV)distribution is the best fit.Furthermore,apricing formula is derived for catastrophe bonds in a stochastic interest rates environment with the losses following a compound doubly stochastic Poisson process using risk-neutralized measure method.Next,the parameters of the pricing model are estmated and calibrated using the catastrophe loss data provided by the Property Claim Services(PCS)Unit of the Insurance Service Office(ISO)from 1985 to 2010and 12-Month London Interbank Offered Rate(LIBOR)based on U.S.Dollar.Finally,simulation results verify our model predictions and demonstrate how financial risks and catastrophic risks affect the prices of catastrophe bonds.
出处 《中国管理科学》 CSSCI 北大核心 2016年第10期35-43,共9页 Chinese Journal of Management Science
基金 教育部人文社会科学研究青年基金项目(15YJC790074) 广东省自然科学基金-博士科研启动项目(2014A030310305) 国家自然科学基金创新研究群体(71521061) 国家自然科学基金资助项目(71273066 71301047 71573056) 国家自然科学基金重点资助项目(71431008)
关键词 巨灾债券 双随机泊松过程 BDT强度 广义极值分布 catastrophe bonds doubly stochastic poisson process Black-Derman-Toy intensity generalized extreme value distribution
  • 相关文献

参考文献2

二级参考文献55

  • 1田玲,向飞.基于风险定价框架的巨灾债券定价模型比较研究[J].武汉大学学报(哲学社会科学版),2006,59(2):168-174. 被引量:27
  • 2施建祥,邬云玲.我国巨灾保险风险证券化研究——台风灾害债券的设计[J].金融研究,2006(5):103-112. 被引量:48
  • 3Courbage C, Stahel W R. The geneva reports risk and insurance research extreme events and insurance= 2011 annus horribilis[R]. The Geneva association, 2012:7- 12.
  • 4Cummins J D. CAT bonds and other risk-linked securi- ties-state of the market and recent developments [J]. Risk Management and Insurance Review, 2008, 11 (1) : 23-47.
  • 5Litzenberger R H, Beaglehole D R, Reynolds C E. As- sessing catastrophe reinsurance-linked securities as a new asset class [J]. Journal of Portfolio Management, 1996, special issue:76-86.
  • 6Dieckmann S. By force of nature: explaining the yield spread on catastrophe bonds [ R]. Wording paper, Wharton Finance Department, University of Pennsylva- nia, 2010.
  • 7Hagendorff B, Hagendorff J, Keasey K. The shareb.oId- er wealth effects of insurance securitization: preliminaryevidence from the catastrophe bond market [J]. Journal of Financial Services Research, 2012.
  • 8Papachristou D. Statistical analysis of the spreads of ca- tastrophe bonds at the time of issue [J]. ASTIN Bulle- tin, 2011, 41(1): 251-277.
  • 9Braun A. Determinants of the cat bond spread at issu- ance [J]. Zeitschrift ftir die gesamte Versieherungswis- senschaft, 2012, 101(5): 721-736.
  • 10Woo G. A catastrophe bond niche: multiple event risk [R]. Working paper, NBER Insurance Group Work- shop, Cambridge, 2004.

共引文献12

同被引文献21

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部